
 

1 

 

 
 
 
 
 
 
 

 
 
 

 
 
 

 
APPLICATION COMMON OPERATING 

ENVIRONMENT (APPCOE) 

USER MANUAL 

 
Release 1.8.1 

 
 

 

 

 

 
 

 

 

 

 

 
Copyright (c) 2021 

 

MapuSoft Technologies, Inc, 

Unit 50197 

Mobile, AL 36605 
www.mapusoft.com 

http://www.mapusoft.com/


Application Common Operating Environment User Manual 
 

  2 

Table of Contents 
 

Chapter 1.About this Guide .............................................................................................. 11 

Objectives ........................................................................................................................ 12 

Audience .......................................................................................................................... 12 

How to Use This Manual ................................................................................................. 12 

MapuSoft Technologies and Related Documentation ..................................................... 14 

Requesting Support .......................................................................................................... 16 

Registering a New Account ............................................................................................. 16 

Submitting a Ticket .......................................................................................................... 16 

Live Support..................................................................................................................... 17 

Documentation Feedback................................................................................................. 17 

Chapter 2.Introduction to AppCOE ................................................................................ 18 

About AppCOE ................................................................................................................ 19 

Installing AppCOE........................................................................................................... 20 

Uninstalling AppCOE ...................................................................................................... 21 

Supported Host Platforms ................................................................................................ 21 

Getting a License for AppCOE ........................................................................................ 21 

Installing License for AppCOE ....................................................................................... 22 

Updating APPCOE .......................................................................................................... 24 

Getting Updates for AppCOE ................................................................................................... 24 

Updating Software Using Remote Update Site ......................................................................... 25 

Updating Software Using Local Update Site ............................................................................ 31 

Chapter 3.AppCOE Components ..................................................................................... 38 

Introduction to AppCOE Components............................................................................. 39 

AppCOE Architecture ...................................................................................................... 41 

OS Simulator .................................................................................................................... 42 

Cross-OS development Platform ..................................................................................... 44 

Full Library Package Generator ....................................................................................... 45 

Optimized Target Code Generator ................................................................................... 45 

Ada-C/C++ Changer ........................................................................................................ 46 

App/Platform Profiler ...................................................................................................... 46 

Chapter 4.Using OS Simulator ......................................................................................... 47 

List of Available OS Simulators ...................................................................................... 48 

Host Development Environment...................................................................................... 48 

Creating an AppCOE C/C++ Project ............................................................................... 50 

AppCOE C/C++ Project Template Files ......................................................................... 57 

Host System Configuration .............................................................................................. 60 

Creating AppCOE C/C++ Project with Multiple Interfaces ............................................ 61 

Adding Source Code Files to AppCOE C/C++Project .................................................... 68 

Building Your Project ...................................................................................................... 72 

Executing Binary Files ..................................................................................................... 75 

Debugging the Demos Supplied by MapuSoft ................................................................ 77 

Debugging Using External Console/Terminal ................................................................. 82 

Inserting Application Code to Run only on Host Environment ....................................... 87 

Updating Project Settings ................................................................................................ 88 

Chapter 5. Using OS Changer Porting Kit ...................................................................... 90 

About OS Changer ........................................................................................................... 91 

Interfaces Available for OS Changer ............................................................................... 92 



Application Common Operating Environment User Manual 
 

  3 

Using OS Changer ........................................................................................................... 93 

Error Handling ................................................................................................................. 93 

Porting VxWorks Applications ........................................................................................ 94 

Method 1– Porting a WindRiver Workbench ‘C’ Project ......................................................... 94 

Method 2–Porting VxWorks Legacy ‘C’ Code ...................................................................... 100 

Porting POSIX/LINUX Legacy ‘C’ Code ..................................................................... 104 

Porting Applications from Nucleus PLUS Legacy Code to Target OS ......................... 107 

Porting Nucleus Legacy ‘C’ Code ................................................................................. 108 

Porting micro-ITRON Legacy ‘C’ Code ....................................................................... 117 

Porting Windows Legacy ‘C’ Code ............................................................................... 120 

Porting µC/OS Legacy ‘C’ Code ................................................................................... 123 

Porting FreeRTOSLegacy ‘C’ Code .............................................................................. 126 

Porting VRTXLegacy ‘C’ Code .................................................................................... 128 

Porting QNXLegacy ‘C’ Code....................................................................................... 131 

Porting RTLINUXLegacy ‘C’ Code .............................................................................. 134 

Building OS Abstractor Interface Library ..................................................................... 138 

Building OS Abstractor Interface Demo Application ............................................................. 138 

OS Changer VxWorks Interface .................................................................................... 138 

Building OS Changer VxWorks Interface .............................................................................. 138 

Building OS Changer VxWorks Interface Library ................................................................. 138 

Building OS Changer VxWorks Interface Demo Application ................................................ 138 

OS Changer POSIX/LINUX Interface........................................................................... 139 

Building OS Changer POSIX/LINUXInterface ...................................................................... 139 

Building OS Changer POSIX/LINUX Interface Library ........................................................ 139 

BuildingOS ChangerPOSIX/LINUX Interface Demo Application ........................................ 139 

OS Changer Nucleus Interface ....................................................................................... 139 

Building OS Changer Nucleus Interface ................................................................................. 140 

Building OS Changer Nucleus Interface Library .................................................................... 140 

Building OS Changer Nucleus Interface Demo Application .................................................. 140 

OS Changer ThreadX Interface ..................................................................................... 140 

Building OS Changer ThreadX Interface ................................................................................ 140 

Building OS Changer ThreadX Interface Library ................................................................... 140 

Building OS Changer ThreadX Interface Demo Application ................................................. 140 

Building OS Changer pSOS Interface .................................................................................... 141 

Building OS Changer pSOS Interface Library........................................................................ 141 

Building OS Changer pSOS Interface Demo Application ...................................................... 141 

OS Changer micro-ITRON Interface ............................................................................. 141 

Building OS Changer micro-ITRON Interface ....................................................................... 141 

Building OS Changer micro-ITRON Interface Library .......................................................... 142 

Building OS Changer micro-ITRON Interface Demo Application ........................................ 142 

OS Changer µC/OS Interface ........................................................................................ 142 

Building OS Changer µC/OS Interface ................................................................................... 142 

Building OS Changer µC/OS Interface Library ...................................................................... 142 

Building OS Changer µC/OS Interface Demo Application .................................................... 142 

OS Changer FreeRTOS Interface .................................................................................. 142 

Building OS Changer FreeRTOS Interface ............................................................................ 143 

Building OS Changer FreeRTOS Interface Library................................................................ 143 

Building OS Changer FreeRTOS Interface Demo Application .............................................. 143 



Application Common Operating Environment User Manual 
 

  4 

OS Changer RTLinux Interface ..................................................................................... 143 

Building OS Changer RTLinux Interface ............................................................................... 143 

Building OS Changer RTLinux Interface Library .................................................................. 144 

Building OS Changer RTLinux Interface Demo Application ................................................. 144 

OS Changer Windows Interface .................................................................................... 144 

Building OS Changer Windows Interface .............................................................................. 144 

Building OS Changer Windows Interface Library.................................................................. 144 

Building OS Changer Windows Interface Demo Application ................................................ 144 

Building Application with Multiple Interface Components .......................................... 144 

Building Application with Multiple Interfaces ....................................................................... 145 

Developing Applications with Multiple Interfaces ................................................................. 145 

Chapter 6: Using Cross-OS Development platform ..................................................... 146 

About Cross-OS Development Platform ....................................................................... 147 

About OS Abstractor...................................................................................................... 148 

Interfaces Available for OS Abstractor.......................................................................... 148 

Full Library Package Generator ..................................................................................... 150 

Generating Full Library Packages ........................................................................................... 150 

Steps to compile the extracted source code using Makefile project ....................................... 157 

Steps to cross-compile the source code using Makefile for target hardware. ......................... 159 

Generating Binary Packages ................................................................................................... 160 

Optimized Target Code Generator ................................................................................. 161 

Generating Optimized Target Code ........................................................................................ 162 

Optimized Target Code Generation for Ada Projects ............................................................. 162 

Generating Project Files for your Target ....................................................................... 195 

Inserting Application Code to Run only on Target OS Environment ..................................... 196 

Running AppCOE Generated Code on your Target ............................................................... 197 

Chapter 7.App/Platform Profiler ................................................................................... 198 

About App/Platform Profiler ......................................................................................... 199 

Opening App/Platform Profiler Perspective .................................................................. 201 

Components on the App/Platform Profiler Window ..................................................... 203 

Viewing App/Platform Profiler Data ............................................................................. 209 

Generating API Timing Report ...................................................................................... 212 

Generating Timing Comparison Report......................................................................... 215 

Chapter 8. Introduction to Ada C/C++ Changer .......................................................... 219 

Ada C/C++ Changer in AppCOE .................................................................................. 220 

Creating Ada C/C++ Changer Projects .......................................................................... 220 

Creating Ada-C Changer project............................................................................................. 220 

Creating Ada-C++ Changer project ........................................................................................ 221 

Creating New Ada-C Template project: ................................................................................. 222 

Creating Ada-C++Template project: ...................................................................................... 223 

Ada Source Directory .................................................................................................... 225 

Configuration with Linked Libraries ............................................................................. 225 

Specifying the Configuration ......................................................................................... 225 

ADA.LIB and UNIT.MAP ............................................................................................ 225 

Program Library Options Tool (adaopts) ....................................................................... 228 

Source Registration Tool (adareg) ................................................................................. 228 

Adacgen ......................................................................................................................... 229 

Compiler Output Files.................................................................................................... 233 



Application Common Operating Environment User Manual 
 

  5 

Adabgen ......................................................................................................................... 234 

Program Builder Processing .......................................................................................... 234 

Adabgen Inputs .............................................................................................................. 234 

Ada C/C++ Changer Outputs ......................................................................................... 236 

Chapter 9.Working with Ada Changer ......................................................................... 237 

Ada C Changer Projects with Ada-C/C++ Scheduling .................................................. 237 

Working with Ada C/C++ Changer Projects ................................................................. 238 

Ada C Changer Projects with Ada-C/C++ Scheduling .................................................. 239 

Ada C Changer Projects with Real-time OS Abstractor Scheduling ............................. 239 

Select Ada-C/C++ Changer build configurations .......................................................... 240 

Import Ada Source files to project ................................................................................. 241 

ADA C/C++ Changer Configuration Options ............................................................... 243 

Target Code Generation for Ada C/C++ Changer Projects ........................................... 259 

Ada C/C++ Changer Property Page ............................................................................... 261 

ADAC/C++ Changer – Additional Information’s ......................................................... 263 

Additional Ada C/C++ Changer Tools .......................................................................... 264 

Revision History ............................................................................................................... 265 

 
List of Figures 

Figure 1_1: Create a Support Ticket from AppCOE ............................................................... 16 

Figure 2_1: Importing License................................................................................................. 22 

Figure 2_2: Selecting the Saved License File .......................................................................... 23 

Figure 2_3: Software Updates Using Remote Site .................................................................. 25 

Figure2_4: Check the Available Updates ................................................................................ 26 

Figure 2_5: Contacting Software Sites for Updates ................................................................ 27 

Figure 2_6: Review and Confirm the Updates ........................................................................ 27 

Figure 2_7: Remote Update Host Target Feature License ....................................................... 28 

Figure 2_8: Remote Updates Download .................................................................................. 28 

Figure 2_9: Security Warning .................................................................................................. 29 

Figure 2_10: Updating Software .............................................................................................. 29 

Figure 2_11: Restart AppCOE ................................................................................................. 30 

Figure 2_12: Confirmation of new features installed .............................................................. 30 

Figure 2_13: Software Updates Using Local Site.................................................................... 31 

Figure 2_14: AppCOE Software Updates................................................................................ 32 

Figure 2_15: Installing Updates by Using Local Update Site ................................................. 33 

Figure 2_16: Available Software Sites .................................................................................... 33 

Figure 2_17: Contacting Software Sites for Updates .............................................................. 34 

Figure 2_18: Review and confirm the Updates ....................................................................... 35 

Figure 2_19: Remote Update Host Target Feature License ..................................................... 35 

Figure 2_20: Remote Updates Download ................................................................................ 36 

Figure 2_21: Security Warning ................................................................................................ 36 

Figure 2_22: Restart AppCOE ................................................................................................. 37 

Figure 2_23: Confirmation of new features installed .............................................................. 37 

Figure 3_1: AppCOE Components .......................................................................................... 40 

Figure 3_2: AppCOE Architecture .......................................................................................... 41 

Figure 3_3: OS Changer Porting kit ........................................................................................ 43 

Figure 3_4: Cross-OS development Platform .......................................................................... 44 

Figure 4_1: Creating an AppCOE C Project............................................................................ 50 



Application Common Operating Environment User Manual 
 

  6 

Figure 4_2: AppCOE C Project Wizard Window.................................................................... 51 

Figure 4_3: Basic Settings Window ........................................................................................ 52 

Figure 4_4: Configurations Window ....................................................................................... 53 

Figure 4_5: Select APIs Window ............................................................................................ 54 

Figure 4_6: Select Host Library Configuration Window ........................................................ 55 

Figure 4_7: Creating AppCOE C/C++ Project Output ............................................................ 56 

Figure 4_8: AppCOE C/C++ Project Template Files .............................................................. 57 

Figure 4_9: Creating a Project with Multiple Interfaces ......................................................... 61 

Figure 4_10: AppCOE CProject Wizard Window................................................................... 62 

Figure 4_11: Basic Settings Window ...................................................................................... 63 

Figure 4_12: Configurations Window ..................................................................................... 64 

Figure 4_13: Select APIs Window. ......................................................................................... 65 

Figure 4_15: A Project with multiple Interfaces Output ......................................................... 67 

Figure 4_16: Adding Source Code Files .................................................................................. 68 

Figure 4_17: Importing Source Code Files from Directory..................................................... 69 

Figure 4_18: Selecting Source Code Files for Importing ........................................................ 70 

Figure 4_19: Importing Source Code Files Output.................................................................. 71 

Figure 4_20: Add Project Include path .................................................................................... 71 

Figure 4_21: Building Your Project ........................................................................................ 73 

Figure 4_22:  Building Process ................................................................................................ 73 

Figure 4_23: Output for Building Binary Files for a Project ................................................... 74 

Figure 4_24: Executing the Binary File ................................................................................... 75 

Figure 4_25: Binary Output ..................................................................................................... 76 

Figure 4_26: Debugging the Demo Application ...................................................................... 77 

Figure 4_27: Confirm Perspective Switch window ................................................................. 78 

Figure 4_28: Confirm Perspective Switch window& Windows Command Prompt opened... 78 

Figure 4_29: Debugging Progress Information ....................................................................... 78 

Figure 4_30: Resume Debugging process ............................................................................... 79 

Figure 4_31: Debug Demo Application Perspective ............................................................... 79 

Figure 4_32: Debug Demo Application Output....................................................................... 80 

Figure 4_33: Debug Demo ApplicationUsing AppCOE ......................................................... 80 

Figure 4_34: Resume Debugging process ............................................................................... 81 

Figure 4_35: Open Debug Dialog ............................................................................................ 82 

Figure 4_36: Debug Configuration Window ........................................................................... 83 

Figure 4_37: Debugging Output Using External Console/Terminal ....................................... 84 

Figure 4_38: Resume Debugging Using External Console/Terminal ..................................... 85 

Figure 4_39: Debugging in Progress ....................................................................................... 86 

Figure 4_40: Updating Project Settings ................................................................................... 88 

Figure 4_41: AppCOE C/C++ Project Updates ....................................................................... 89 

Figure 5_1: About OS Changer ............................................................................................... 91 

Figure 5_2: OS Changer Flow Diagram .................................................................................. 92 

Figure 5_3: Importing a VxWorks Workbench ‘C’ Project in AppCOE ................................ 94 

Figure 5_4: AppCOE Import Window .................................................................................... 95 

Figure 5_5: Application Startup Files Window ....................................................................... 96 

Figure 5_6: Provide Inputs for Projects Window .................................................................... 97 

Figure 5_7: Porting Reports Page ............................................................................................ 97 

Figure 5_8: Porting Reports Page Guidelines .......................................................................... 98 

Figure 5_9: Project Perspective of the Ported Projects ............................................................ 99 

Figure 5_10: Porting VxWorks Legacy ‘C’ Code in AppCOE ............................................. 100 



Application Common Operating Environment User Manual 
 

  7 

Figure 5_11: Import VxWorks Legacy Code Window .......................................................... 101 

Figure 5_12: ImportedvxWorks Legacy Code output ........................................................... 102 

Figure 5_13: Porting POSIX/LINUX Legacy ‘C’ Code in AppCOE.................................... 104 

Figure 5_13: Import POSIX/LINUX Legacy Code Window ................................................ 105 

Figure 5_14 : Importing POSIX/LINUX Legacy Code Output............................................. 106 

Figure 5_15: Porting Nucleus PLUS Applications ................................................................ 107 

Figure 5_16: Importing Nucleus Legacy ‘C’ Code in AppCOE ........................................... 108 

Figure 5_17: Import Nucleus Legacy Code Window ............................................................ 109 

Figure 5_18: Importing Nucleus Code Output ...................................................................... 110 

Figure 5_19: Importing ThreadX Legacy ‘C’ Code in AppCOE .......................................... 111 

Figure 5_20: Import Threadx Legacy Code Window ............................................................ 112 

Figure 5_21: Importing Threadx Code Output ...................................................................... 113 

Figure 5_22: Importing pSOS Legacy ‘C’ Code in AppCOE ............................................... 114 

Figure 5_23: Import pSOS Legacy Code Window ................................................................ 115 

Figure 5_24: Importing pSOS Legacy Code Output ............................................................. 116 

Figure 5_25: Importing micro-ITRON Legacy ‘C’ Code in AppCOE .................................. 117 

Figure 5_26: Import micro-ITRON Legacy Code Window .................................................. 118 

Figure 5_27: Importing micro-ITRON Legacy Code Output ................................................ 119 

Figure 5_28: Importing Windows Legacy ‘C’ Code in AppCOE ......................................... 120 

Figure 5_29: Import Windows Legacy Code......................................................................... 121 

Figure 5_30: Importing Windows Legacy Code Output ....................................................... 122 

Figure 5_31: Importing µC/OSLegacy ‘C’ Code in AppCOE .............................................. 123 

Figure 5_32: Import µC/OS Legacy Code Window .............................................................. 124 

Figure 5_33: Importing µC/OS Legacy Code Output ........................................................... 125 

Figure 5_34: Importing FreeRTOSLegacy ‘C’ Code in AppCOE ...................................... 126 

Figure 5_35: Import FreeRTOSLegacy Code Window ......................................................... 127 

Figure 5_36: Importing FreeRTOS Legacy Code Output ..................................................... 128 

Figure 5_37: Importing VRTX Legacy ‘C’ Code in AppCOE.............................................. 128 

Figure 5_38: Import VRTX Legacy Code Window .............................................................. 129 

Figure 5_39: Importing VRTX Legacy Code Output ............................................................ 131 

Figure 5_40: Importing QNX Legacy ‘C’ Code in AppCOE ................................................ 131 

Figure 5_41: Import QNXLegacy Code Window ................................................................. 132 

Figure 5_42: Importing QNX Legacy Code Output .............................................................. 134 

Figure 5_43: Importing RTLINUX Legacy ‘C’ Code in AppCOE ....................................... 134 

Figure 5_44: Import RTLINUX Legacy Code Window........................................................ 135 

Figure 5_45: Importing RTLINUX Legacy Code Output ..................................................... 137 

Figure 6_1: Cross-OS Development Platform ....................................................................... 147 

Figure 6_2: OS Abstractor Flow Diagram ............................................................................. 148 

Figure 6_3: Generating Library Package ............................................................................... 150 

Figure 6_4: Select Target OS ................................................................................................. 151 

Figure 6_5: Select OS Changer or OS Abstractor Products .................................................. 153 

Figure 6_6: Select Destination Path ....................................................................................... 154 

Figure 6_7: Full Library Package Generation Verification Report ....................................... 155 

Figure 6_8: Full Library Package Generation Folder ............................................................ 156 

Figure 6_9: Navigating the extracted folder .......................................................................... 157 

Figure 6_10: Setting the user selected root directory ............................................................ 157 

Figure 6_11: User selected library directory ......................................................................... 157 

Figure 6_12: Compiling a 32 bit application in X86_64 machine......................................... 158 

Figure 6_13: Compiling the extracted source code ............................................................... 158 



Application Common Operating Environment User Manual 
 

  8 

Figure 6_14: Cleaning the libraries........................................................................................ 158 

Figure 6_15: Editing the cross_os_usr.h file. ........................................................................ 159 

Figure 6_16: Configuring the cross-compiler path in.bashrc file. ......................................... 160 

Figure 6_17: Cross-compiling the cross os and interfaces using cross-compiler .................. 160 

Figure 6_18: Cross-compiling the demo/other applications using cross-compiler. .............. 160 

Figure 6_19:AppCOE Target Code Generator ...................................................................... 163 

Figure  6_20: Selected VxWorks Target in this Example ..................................................... 164 

Figure  6_21: Resource Protection under SMP selection in Linux/RT Linux ....................... 166 

Figure 6_22: Select the linked-in Libraries ........................................................................... 167 

Figure 6_23: Profiler Configuration ...................................................................................... 168 

Figure  6_24: Platform API Profiling .................................................................................... 170 

Figure 6_25: Application Function Profiling ......................................................................... 172 

Figure 6_26: API Optimization ............................................................................................. 174 

Figure 6_27: Task Tab ........................................................................................................... 176 

Figure 6_29: Memory Tab ..................................................................................................... 180 

Figure 6_30: Other Resources Tab ........................................................................................ 182 

Figure 6_31: Debug Tab ........................................................................................................ 184 

Figure 6_32: Output Devices Tab .......................................................................................... 186 

Figure 6_33: ANSI Mapping Tab .......................................................................................... 188 

Figure 6_34: Device Input or Output Tab .............................................................................. 190 

Figure 6_35: Interface Tab ..................................................................................................... 192 

Figure6_36: Target Code Generation Output ........................................................................ 193 

Figure 6_37: AppCOE Generated Example .......................................................................... 194 

Figure 6_38: Generating Project Files ................................................................................... 195 

Figure 7_2: Opening App/Platform Profiler Perspective....................................................... 201 

Figure  7_3: App/Platform Profiler Perspective .................................................................... 202 

Figure 7_4: App/Platform Profiler - System Details ............................................................. 203 

Figure 7_5: App/Platform Profiler System ............................................................................ 204 

Figure 7_6: Platform APIs and Application Functions.......................................................... 205 

Figure 7_7: Platform APIs ..................................................................................................... 206 

Figure 7_8: Application – Functions ..................................................................................... 207 

Figure 7_9: App/Platform Profiler – Threads ........................................................................ 208 

Figure 7_10: Viewing AppCOE Profiler Data....................................................................... 209 

Figure 7_11: Selecting the .pal File Extension to Analyze .................................................... 210 

Figure 7_12: Selecting the API to view the Profiler Data ..................................................... 211 

Figure 7_13: Generate Timing Report ................................................................................... 212 

Figure 7_14: Saving the Timing Report ................................................................................ 213 

Figure 7_15: Generate Timing Comparison Report .............................................................. 215 

Figure 7_16: Import PAL File ............................................................................................... 216 

Figure 7_17: Selecting the APIs ............................................................................................ 217 

Figure  7_18: Saving Timing Comparison Report ................................................................. 218 

Figure 7_19: Generated Timing Comparison Report ............................................................ 218 

Figure 8_1:  Ada-C Changer project ...................................................................................... 220 

Figure 8_2:  Ada-C++ Changer project ................................................................................. 221 

Figure  8_3:  Create Ada-C Template .................................................................................... 222 

Figure  8_4:  Create Ada-C++ Template ............................................................................... 223 

Figure 8_5:  Import Ada Files ................................................................................................ 224 

Figure 9_1: Creating Ada-C Changer Project ........................................................................ 238 

Figure 9_2: Ada-C/C++ Changer Wizard .............................................................................. 239 



Application Common Operating Environment User Manual 
 

  9 

Figure  9_3: Basic Settings Window for Ada-C/C++ Changer Project ................................. 240 

Figure  9_4: Select Ada-C/C++ Changer build configurations ............................................. 240 

Figure 9_5: Import Ada Source files to project ..................................................................... 241 

Figure 9_6: C/C++ Output Page ............................................................................................ 243 

Figure  9_7: Ada Listings Tab ............................................................................................... 246 

Figure 9_8: Ada Messages Tab.............................................................................................. 249 

Figure 9_9: Ada Drivers Tab ................................................................................................. 251 

Figure 9_10: Additional Options Tab .................................................................................... 252 

Figure 9_11: OS Abstractor Integration Page ........................................................................ 253 

Figure 9_12:  Ada-C Project Report Page ............................................................................. 254 

Figure 9_13: Output for Ada-C/C++Changer ........................................................................ 255 

Figure  9_14: Build Project .................................................................................................... 257 

Figure 9_15: Building Ada-C/C++Changer project .............................................................. 258 

Figure 9_16: Generated .exe File ........................................................................................... 259 

Figure  9_17: Ada C/C++ Changer Properties ....................................................................... 261 

Figure  9_18: Ada  C/C++ Changer Property Page ............................................................... 262 

 

List of Tables 
 

Table 1_1: Notice Icons ........................................................................................................... 13 

Table 1_2: Text and Syntax Conventions ................................................................................ 13 

Table 1_3: Document Description Table ................................................................................. 14 

Table4_1: OS HOST Selection ................................................................................................ 87 

Table 4_2: Target 64-bit CPU Selection .................................................................................. 87 

Table 5_1: VxWorks Interface Header File ........................................................................... 138 

Table 5_2:  VxWorks Interface Demo Application File ........................................................ 138 

Table 5_3: Posix Interface Header File ................................................................................. 139 

Table 5_4:  POSIX/LINUX Interface Demo Application File .............................................. 139 

Table 5_5: Nucleus Interface Header File ............................................................................. 139 

Table 5_6:  Nucleus Interface Demo Application File .......................................................... 139 

Table 5_7: ThreadX Interface Header File ............................................................................ 140 

Table 5_8:  Nucleus Interface Demo Application File .......................................................... 140 

Table 5_9: pSOS Interface Header File ................................................................................. 141 

Table 5_10:  pSOS Interface Demo Application File ............................................................ 141 

Table 5_11: OS Changer micro-ITRON Interface Header File ............................................. 141 

Table 5_12: OS Changer micro-ITRON Interface Demo Application File ........................... 141 

Table 5_13: OS Changer µC/OSInterface Header File ......................................................... 142 

Table 5_14:  µC/OS Interface Demo Application File .......................................................... 142 

Table 5_15: OS Changer FreeRTOSInterface Header File ................................................... 143 

Table 5_16:  FreeRTOSInterface Demo Application File ..................................................... 143 

Table 5_17: OS Changer RTLinuxInterface Header File ...................................................... 143 

Table 5_18: RTLinux Interface Demo Application File........................................................ 143 

Table 5_19: OS Changer Windows Interface Header File .................................................... 144 

Table 5_20:  Windows Interface Demo Application File ...................................................... 144 

Table 6_1: User specific command line options of make file ............................................... 157 

Table 6_2: User specific command line options of make file for target hardware. ............... 159 

Table 6_3: Field descriptions on AppCOE Optimized Target Code Generator .................... 165 

Table 6_4: Field descriptions on Profiler Configuration tab ................................................. 169 

Table 6_5: Field descriptions on Platform API Profiling tab ................................................ 171 



Application Common Operating Environment User Manual 
 

  10 

Table 6_6: Field descriptions on Application Functions Profiling tab .................................. 173 

Table 6_7: Field descriptions on API Optimization tab ........................................................ 175 

Table 6_8:Field descriptions on Task tab .............................................................................. 177 

Table 6_9: Field descriptions on Process tab ......................................................................... 179 

Table 6_10: Field descriptions on Memory tab ..................................................................... 181 

Table 6_11: Field descriptions on Other Resources tab ........................................................ 183 

Table 6_12: Field descriptions on Debug tab ........................................................................ 185 

Table 6_13: Field descriptions on Output Devices tab .......................................................... 187 

Table 6_14: Field descriptions on ANSI Mapping tab .......................................................... 189 

Table 6_15: Field descriptions on Device I/O tab ................................................................. 191 

Table 6_16: Field descriptions on Interface tab ..................................................................... 193 

Table 6_17: Target OS Selection ........................................................................................... 196 

Table 7_1: Field descriptions for importing the PAL file ..................................................... 217 

Table 8_1: Compiler Generates the Requested listing Options for Each File ....................... 229 

Table 8_2: adacgen Options................................................................................................... 230 

Table 8_3: Options For Maintainers ...................................................................................... 232 

Table 8_4: Compiler Output Files ......................................................................................... 233 

Table 8_5: Additional Compiler Output Files ....................................................................... 233 

Table 8_5:adabgen Options ................................................................................................... 235 

Table 9_1: Field Descriptions for Import Ada Files .............................................................. 242 

Table 9_2: Field Descriptions for C/C++ Output tab ............................................................ 244 

Table 9_3: Field Descriptions for Ada Listings tab ............................................................... 247 

Table 9_4: Field Descriptions for Ada Messages tab ............................................................ 250 

Table 9_5: Field Descriptions for Ada Drivers Options tab .................................................. 251 

Table 9_6: Field Descriptions for Additional Options tab..................................................... 252 

 

 

  



Application Common Operating Environment User Manual 
 

  11 

 

Chapter 1.About this Guide 

 
This chapter contains the following topics: 

 

Objectives 

 

Audience 
 

How to Use This Manual 

 

Document Conventions 

 

MapuSoft Technologies and Related Documentation 
 

Requesting Support 

 

Documentation Feedback 

 

  



Application Common Operating Environment User Manual 
 

  12 

Objectives 

This manual describes about AppCOE IDE and offers information on porting your 

application to different toolsets and platforms, and information on how to use our 

functionality and learn our user interface (UI). AppCOE provides a multiple OS interface 

host environment with provisions to generate optimized code for a wide variety of target OS 

platforms.  

Topics in this manual also apply to the other MapuSoft’s interfaces supported by OS 

Changer which allows you to re-use a wide variety of legacy code such as VxWorks, pSOS, 

Nucleus PLUS, POSIX/LINUX, Windows, uITRON, ThreadX. 

Audience 

This manual is designed for anyone who wants to port applications to different operating 

systems, create projects, and run applications. This manual is intended for the following 

audiences: 

• Customers with technical knowledge and experience with the Embedded Systems 

• Application developers who want to migrate their application to different RTOSs 

• Managers who want to minimize the cost and leverage on their existing code 

How to Use This Manual 

This manual and the other MapuSoft Technologies manuals explain how to port and 

migrate applications to different operating systems. 

 

 The organization of this document is as described below: 

 

Using these documents, you can 

• Develop & Port legacy applications. 

• Generate code optimization & target code generation. 

• Generate Full Library Package OS Abstractor/OS Changer Packages 

• Enable Application profiling and platform profiling 

• Convert Ada 83/95 applications to C/C++  



Application Common Operating Environment User Manual 
 

  13 

Document Conventions 
 

Table 1_1 defines the notice icons used in this manual.  

Table 1_1: Notice Icons 

Icon Meaning Description 

 Informational note Indicates important features 

or icons. 

 
Caution Indicates a situation that 

might result in loss of data or 

software damage. 

 
Table 1_2defines the Text and Syntax conventions used in this manual. 

 

Table 1_2: Text and Syntax Conventions 

Convention Description 

Courier New Identifies Program listings and 

Program examples. 

Italic text like this 

 
Introduces important new terms. 

• Identifies book names 

• Identifies Internet draft titles. 

COURIER NEW,ALL CAPS Identifies File names. 

Courier New, Bold Identifies Interactive Command lines 

 

 

 

 

 

 

 

 

 

 

 

 



Application Common Operating Environment User Manual 
 

  14 

MapuSoft Technologies and Related Documentation 

Reference manuals can be provided under NDA. Click http://mapusoft.com/contact/to 

request for a reference manual. The document description table lists MapuSoft Technologies 

manuals. 

Table 1_3: Document Description Table 

User Guides Description 

System Configuration Guide Provides detailed description on the system 

configuration to work with MapuSoft products. This 

guide: 

• Describes the system requirements and 
configurations to get started with MapuSoft 

Technologies products 

AppCOE Quick Start Guide 

 

Provides detailed description on how to become familiar 

with AppCOE product and use it with ease. This guide: 

 

• Explains how to quickly set-up AppCOE on 

Windows/Linux Host and run the demos that came 

along AppCOE 

 OS Abstractor Interface 
Reference Manual 

Provides detailed description of how to use OS 
Abstraction. This guide: 

• Explains how to develop code independent of the 

underlying OS 

• Explains how to make your software easily support 

multiple OS platforms 

VxWorks Interface Reference 

Manual 

Provides detailed description of how to get started 

with VxWorks interface support that MapuSoft 

provides. This guide: 

• Explains how to use VxWorks interface, port 
applications 

POSIX Interface Reference 

manual 

Provides detailed description of how to get started 

with POSIX interface support that MapuSoft provides. 

This guide: 

• Explains how to use POSIX interface, port 

applications 

pSOS Interface Reference 

Manual 

Provides detailed description of how to get started 

with pSOS interface support that MapuSoft provides. 

This guide: 

• Explains how to use pSOS interface, port 
applications 

pSOS Classic Interface 

Reference Manual 

Provides detailed description of how to get started 

with pSOS Classic interface support that MapuSoft 

provides. This guide 

• Explains how to use pSOS Classic interface, port 

applications 

Nucleus Interface Reference 

Manual 

Provides detailed description of how to get started 

with Nucleus interface support that MapuSoft 

provides. This guide: 

• Explains how to use Nucleus interface, port 
applications 

Micro-ITRON Interface 

Reference Manual 
Provides detailed description of how to get started 

with uITRON interface support that MapuSoft 

provides. This guide: 

• Explains how to use uITRON interface, port 

applications 

http://mapusoft.com/contact/


Application Common Operating Environment User Manual 
 

  15 

User Guides Description 

ThreadX Interface Reference 

Manual 

Provides detailed description of how to get started 

with ThreadX interface support that MapuSoft 

provides. This guide: 
Explains how to use ThreadX interface, port 

applications 

µC/OS Interference 

Reference Manual 

Provides detailed description of how to get started 

with µC/OS interface support that MapuSoft provides. 

This guide: 

• Explains how to use µC/OS interface, port 

applications 

FreeRTOS Interference 
Reference Manual 

Provides detailed description of how to get started 
with FreeRTOS interface support that MapuSoft 

provides. This guide: 

• Explains how to use FreeRTOS interface, port 

applications 

Windows Interface Reference 

Manual 

Provides detailed description of how to get started 

with Windows interface support that MapuSoft 

provides. This guide: 

• Explains how to use Windows interface, port 

applications 

RTLinux Interface Reference 
Manual 

Provides detailed description of how to get started with 
RTLinux interface support that MapuSoft provides. 

This guide: 

• Explains how to use RTLinux interface, port 

applications 

VRTX Interface Reference 

Manual 

Provides detailed description of how to get started with 

VRTX interface support that MapuSoft provides. This 

guide: 

• Explains how to use VRTX interface, port 

applications 

QNX Interface Reference 
Manual 

Provides detailed description of how to get started with 
QNX interface support that MapuSoft provides. This 

guide: 

• Explains how to use QNX interface, port 

applications 

Release Notes Provides the updated release information about 

MapuSoft Technologies new products and features for 

the latest release. 
This document: 

• Gives detailed information of the new products 

• Gives detailed information of the new features added 
into this release and their limitations, if required 

 

 

 

 

 

 

 

 

  



Application Common Operating Environment User Manual 
 

  16 

 

Requesting Support 

Technical support is available through the MapuSoft Technologies Support Centre. If you 

are a customer with an active MapuSoft support contract, or covered under warranty, and 

need post sales technical support, you can access our tools and resources online or open a 

conversation/ticket at http://www.mapusoft.com/support 
 
Anyone can initially contact sales/admin/tech via the above mechanism, however tech 

support is offered to only registered users or evaluation customers. 

Registering a New Account 

If you are a customer with valid tech support contract or a trial user, please request an 

account be created by providing your email address, company address, telephone number 

etc by contacting sales@mapusoft.com. You will be provided via account name (your email) 

and also password to sign-in 

Submitting a Ticket 

1. To submit a ticket, simple sign-in into your account 

http://www.mapusoft.com/supportand open a conversation. 
 
2. To submit a ticket from within AppCOE IDE 
 
From AppCOE main menu, Select Help > Create a Support Ticket as shown in below Figure 

  

Figure 1_1: Create a Support Ticket from AppCOE 

 
 

To submit a ticket, simple sign-in into your account 

http://www.mapusoft.com/supportand open a conversation. 
 

MapuSoft Support personnel will get back to you within 48 hours with a valid response. 

http://www.mapusoft.com/support
http://www.mapusoft.com/support
http://www.mapusoft.com/support


Application Common Operating Environment User Manual 
 

  17 

Live Support 

Chat: MapuSoft Technologies also provides technical support through Live Chat from 

www.mapusoft.com website. If Chat is offline, please leave a detailed message including 

your email address, telephone number and company name so that MapuSoft personnel's 

can quickly respond to either responding to your chat by calling you on the number that 

you have provided 
  

Telephone: You can also reach us at our toll free number: 1-877-627-8763 and press 

the tech support option to contact MapuSoft tech support team for any urgent 

assistance. 

 

Documentation Feedback 

 

We greatly appreciate your feedback. Simple sign-in or just start a conversation and let us 

know via:http://www.mapusoft.com/support/ 

  

http://www.mapusoft.com/support/


Application Common Operating Environment User Manual 
 

  18 

 

Chapter 2.Introduction to AppCOE 

 

This chapter contains the following topics: 

 

About AppCOE 

Installing AppCOE 

Uninstalling AppCOE 

Supported Host Platforms 

Getting a License for AppCOE 

Installing License for AppCOE 

Updating APPCOE 

 

 

  



Application Common Operating Environment User Manual 
 

  19 

About AppCOE 

AppCOE is an Eclipse based IDE. AppCOE integrates software interoperability & reuse tools 

like OS Changer and OS Abstractor with Eclipse’s CDT to offer an IDE for developing and 

porting embedded applications on many host/target platforms.  

 

With AppCOE you can perform the following actions: 

• Creation of C and C++ AppCOE projects  

• Porting of legacy applications 

• Host development with simulation for many OS applications 

• Converting Ada source code to C/C++ code 

• Platform and Application profiling 

• Automatic configuration of any OS Changer and OS Abstractor APIs needed by the 

application  

• Custom configuration of OS& OS Abstractor resources needed by the application  

• Custom configuration of OS Abstractor for single or multi-application development 

(Process Feature support)  

• Optimized source code generation  

• Full Source Library Package generation 

 

Contact MapuSoft to receive the components needed for using AppCOE. The steps for using 

AppCOE are comprehensively described in the following pages.  

http://www.mapusoft.com/contact/


Application Common Operating Environment User Manual 
 

  20 

Installing AppCOE 

You can download an evaluation copy from our website or install AppCOE via the 

evaluation CD given by MapuSoft Technologies. 

To install AppCOE: 

1. Click on the exe or tar file from CD/download and run it. A welcome html page will 

be auto run 

2. SelectHost 

ForWindows Host,  

1. For Ada-C/C++ Changer™Product, download appcoe_x32.exe or 

appcoe_x64.exeinto the local drive 

2. For OS Changer® Porting Kit, Cross-OS Development Platform™, Cross-OS 

Hypervisor™, Linux OK™, OS Simulator™, App/Platform Profiler™, OS Version 

UpKit™products, download either appcoe_x32.exe or 

appcoe_x64.exedepending on the host machine CPU architecture 

3. Installer will ask for a directory to install AppCOE release. Browse to the 

directory or provide a directory name when prompted 

4. Once AppCOE is installed, reboot the system. AppCOE will not run properly 

without re-boot 

5. Now, Run the AppCOE.exe in AppCOE <installdir> or launch the AppCOE 

application from the windows shortcut in desktop 

 

For Linux Host,  

1. For Ada-C/C++ Changer™Product, download app-coe-linux_x32.tar.gz into the 

local drive 

2. For OS Changer® Porting Kit, Cross-OS Development Platform™, Cross-OS 

Hypervisor™, Linux OK™, OS Simulator™, App/Platform Profiler™, OS Version 

UpKit™products, download either app-coe-linux_x32.tar.gz or app-coe-

linux_x64.tar.gzdepending on the host machine CPU architecture 

3. Extract the tar file app-coe-linux_x32.tar.gz or app-coe-linux_x64.tar.gz. You 

will get install.sh&app-coe-linux.bin 

4. Run the install.sh  program, it will check for dependency needed for installing 

AppCOE, Install the missing dependencies and try running this script again, If 

no dependencies is found, AppCOE installer will start 

5. Installer will ask for a directory to install AppCOE release, Browse to the 

directory <installdir> or provide a directory name when prompted  (ensure that 

the logged-in user has full read/write/execute privileges to in this install 

directory) 

6. After AppCOE gets installed, install.sh will check for AppCOE dependencies. 

Install the missing dependencies if any 

7. Then run app-coe-linux.bin to launch theAppCOE installer. 

8. Repeat steps 2-4 as in the Linux host  

NOTE: 

For Windows Host:  

By default, it is c:\MapuSoft\AppCOE. 

For Linux Host:  

By default path is /usr/local/AppCOE 

Do not provide special characters to the <installdir> as you will get java run-time 

errors.AppCOE may have problems with paths containing spaces, and if not, usually other 

programs used with AppCOE will experience problems with such paths. 

http://www.mapusoft.com/ada-cc-changer/
http://www.mapusoft.com/os-changer-porting-kit/
http://www.mapusoft.com/cross-os-development-platform/
http://www.mapusoft.com/cross-os-hypervisor/
http://www.mapusoft.com/cross-os-hypervisor/
http://www.mapusoft.com/linux-ok/
http://www.mapusoft.com/os-simulator/
http://www.mapusoft.com/appcoe/
http://www.mapusoft.com/os-version-upkit/
http://www.mapusoft.com/os-version-upkit/
http://www.mapusoft.com/ada-cc-changer/
http://www.mapusoft.com/os-changer-porting-kit/
http://www.mapusoft.com/cross-os-development-platform/
http://www.mapusoft.com/cross-os-hypervisor/
http://www.mapusoft.com/cross-os-hypervisor/
http://www.mapusoft.com/linux-ok/
http://www.mapusoft.com/os-simulator/
http://www.mapusoft.com/appcoe/
http://www.mapusoft.com/os-version-upkit/
http://www.mapusoft.com/os-version-upkit/


Application Common Operating Environment User Manual 
 

  21 

Uninstalling AppCOE 

To uninstall AppCOE: 

1. Browse to the installed AppCOE directory and start the Uninstall application. 
2. For Windows only,you can also uninstall AppCOE by selecting Control Panel> 

Add/Remove Programs. Select AppCOE and click Remove. 

3. There is a possibility of user generated/modified files to be left on your AppCOE 

installation directory. If not necessary, delete the files manually to remove the files.  

Supported Host Platforms 

AppCOE supports the following host platforms: 

• Windows XP/7 /8 

• Linux  

Supported Development APIs: 

• Cross-OS: OS Abstractor* Interface  

 

*supports Windows 2000, Windows XP, Windows CE, Windows Vista, Android, 

Linux, MQX, NetBSD, Nucleus PLUS, QNX, Solaris, ThreadX, uCOS, micro-ITRON, 

VxWorks, ecos , T-Kernel , LynxOS , LynxOS , QNX ,UCOS target operating 
systems.  

 

• Cross-OS: OS Abstractor POSIX/LINUX Interface  

 

• Cross-OS: OS Abstractor UITRON Interface  

 

• OS Changer: Nucleus Interface 

 

• OS Changer: pSOS Interface (1.5 Revision& 2.x Revision) 

 

• OS Changer: ThreadX  Interface  
 

• OS Changer: VxWorks Interface  

 

• OS Changer: Windows Interface  

 

• OS Changer: µC/OS Interface  

 

• OS Changer: FreeRTOS Interface  

 

For a list of AppCOE supported target operating systems, click here: www.mapusoft.com/ 

Getting a License for AppCOE 

AppCOE is licensed by the following host and target licenses. A 30-day advanced evaluation 
license is available for the host licenses. Click www.mapusoft.com/downloads/ to request 

an evaluation license. 

  

http://www.mapusoft.com/
http://mapusoft.com/downloads


Application Common Operating Environment User Manual 
 

  22 

Installing License for AppCOE 

MapuSoft provides a license key to the customers. Once the customers provide the Mac 

Address of their system, MapuSoft Technologies provides a License key for that particular 

system. This establishes security for the license. 

To install the license: 

1. Save the license file given to you by MapuSoft. 

2. On AppCOE main menu, click the down arrow next to Key button and select Install 

License as shown inFigure 2_1. 

Figure 2_1: Importing License 

 



Application Common Operating Environment User Manual 
 

  23 

3. Browse to the location of the saved license file,click Open as shown in Figure 2_2. 

The license key is installed and now you can work on AppCOE. 

Figure 2_2: Selecting the Saved License File 

 

  



Application Common Operating Environment User Manual 
 

  24 

Updating APPCOE 

 

Getting Updates for AppCOE 

 

NOTE: This feature requires AppCOE Host License. 

Clickhttp://www.mapusoft.com/contact/ to send a request to receive licenses and 

documentation.  

 

You can get latest AppCOE updates from http://www.mapusoft.com using the following two 

options: 

• Remote Update: By using Remote Update Site, the system will automatically contact 

http://www.mapusoft.com/ website and search for the latest updates. You need 

internet connectivity for this to work 

• Local Update: By using Local Update Site, you can do AppCOE updates without 

connecting to the Internet. For this to work, you need to get the updated files from 

http://www.mapusoft.com/ by e-mail or CD 

  

http://www.mapusoft.com/contact/
http://www.mapusoft.com/
http://www.mapusoft.com/
http://www.mapusoft.com/


Application Common Operating Environment User Manual 
 

  25 

Updating Software Using Remote Update Site 

To update software using Remote update site: 

1. From AppCOE main menu, select Help >Check for Updates as shown inFigure 2_3. 

Figure 2_3: Software Updates Using Remote Site 

 

 



Application Common Operating Environment User Manual 
 

  26 

2. Check the Available Updates that you wish to install as shown in Figure2_4. 

Figure2_4: Check the Available Updates 

 

 

3. Contacting Software Sites for Updates as shown in Figure 2_5. 

 

 

 
 

 

 

 

 
 

 

 

 

 

 
 

 

 

 



Application Common Operating Environment User Manual 
 

  27 

 
 

Figure 2_5: Contacting Software Sites for Updates 

 

 
 

4. On Available Updates Search Results window, select the features under the AppCOE 

Update Site tree parent and click Next as shown in Figure 2_6. 

 

Figure 2_6: Review and Confirm the Updates 

 



Application Common Operating Environment User Manual 
 

  28 

 

 

5. On Review License window, select the radio button next to I accept the terms in 

the license agreements and click Finish as shown inFigure 2_7.  
 

Figure 2_7: Remote Update Host Target Feature License 

 
 

6. During the Updating Software Window, you can view the new plug-ins being 

downloaded as shown in Figure 2_8. 

 

Figure 2_8: Remote Updates Download 



Application Common Operating Environment User Manual 
 

  29 

 
 

7. Security Warning in between the Installation as shown inFigure 2_9. 

Figure 2_9: Security Warning 

 

 
 

8. After press ok,Installation Continue as shown in  
9. Figure 2_10. 

 

Figure 2_10: Updating Software 



Application Common Operating Environment User Manual 
 

  30 

 
 

Once all the features and plug-ins have been downloaded successfully and their files 

installed into the product on the local computer, a new configuration that incorporates 

these features & plug-ins will be formulated. Click yes when asked to exit and restart the 

Workbench for the changes to take effect as shown in 

Figure 2_11. You have now successfully installed new feature updates to your AppCOE 

using the Remote Update Site. 

Figure 2_11: Restart AppCOE 

 
 

10. Check  the new features installed correctly from the AppCOE installed directory > 

plugins as shown in Figure 2_12. 

 

Figure 2_12: Confirmation of new features installed 

 



Application Common Operating Environment User Manual 
 

  31 

 
 

Updating Software Using Local Update Site 

1. From AppCOE main window, select Help >Check for Updates as shown in Figure 

2_13. 

Figure 2_13: Software Updates Using Local Site 



Application Common Operating Environment User Manual 
 

  32 

 

2. Check the Available Updateswindows that you wish to install and click Next as 

shown in Figure 2_1. 

Figure 2_14: AppCOE Software Updates 

 

 



Application Common Operating Environment User Manual 
 

  33 

On Updates sites to visit window, select Add and browse for the folder provided by   

MapuSoft, named as mapusoft.AppCOE.updatesite and click OK as shown in Figure 2_15. 

NOTE: If the system does not allow you to give the same site name, select the previous 

updatesite folder from the list and click Remove. Or, you can also save the Updatesite 

folder in any other location on your local disk. 

 

Figure 2_15: Installing Updates by Using Local Update Site 

 

3. On Edit Local Site pop up window, next to Name text box, provide a different name 

and click OK. The name can be any name that is not already present on the list as 

shown inFigure 2_16.and click OK. 

Figure 2_16: Available Software Sites 



Application Common Operating Environment User Manual 
 

  34 

 

4. Contacting Software Sites for Updates as shown inFigure 2_17. 

Figure 2_17: Contacting Software Sites for Updates 

 

 



Application Common Operating Environment User Manual 
 

  35 

5. On Available Updates Window, select the features under the AppCOE Update 

Sitetree parent and click Next as shown in Figure 2_18. 

Figure 2_18: Review and confirm the Updates 

 

6. On Available Updates window, select the radio button next to I accept the terms in 

the license agreements and click Finish as shown in Figure 2_19. 

Figure 2_19: Remote Update Host Target Feature License 

 

 

7. During the Updating Software Window, you can view the new plug-ins being 

downloaded as shown in Figure 2_20. 

 

 



Application Common Operating Environment User Manual 
 

  36 

Figure 2_20: Remote Updates Download 

 

8. Security Warning in between the Installation as shown in Figure 2_21. 

Figure 2_21: Security Warning 

 

 
 

9. Once all the features and plug-ins have been downloaded successfully and their files 

installed into the product on the local computer, a new configuration that 

incorporates these features and plug-ins will be formulated. Click Yes when asked 

to exit and restart the Workbench for the changes to take effect as shown inFigure 

2_22. 

 

10. You have now successfully installed new feature updates to your AppCOE using the 

Remote Update Site. 

 

 



Application Common Operating Environment User Manual 
 

  37 

 

Figure 2_22: Restart AppCOE 

 
 

11. Check  the new features installed correctly from the AppCOE installed directory 

>plugins as shown Figure 2_23. 
 

Figure 2_23: Confirmation of new features installed 

 

 
  



Application Common Operating Environment User Manual 
 

  38 

 

Chapter 3.AppCOE Components 

This chapter introduces all the AppCOE components. They are as follows: 

 

Introduction to AppCOE Components 

AppCOE Architecture 

OS Simulator 

OS Changer Porting kit  

Cross-OS development Platform 

Optimized Target Code Generator 

Ada-C/C++ Changer 

App/Platform Profiler 

 

  



Application Common Operating Environment User Manual 
 

  39 

 

Introduction to AppCOE Components 

With Application Common Operating Environment (AppCOE) you can easily port, abstract 

and optimize your code on a host machine and run the application on different target 

platforms. AppCOE leverages the existing OS Changer and OS Abstractor technologies while 

adding advanced code optimization capacities on multiple OS environments. AppCOE 
provides users an easy-to-use graphical user interface that is integrated with the Eclipse® 

based CDT environment. 

AppCOE uses OS Abstractor and OS Changer technology to produce Cross-OS 

development platform for manytargets.AppCOE target features include: 

• Porting of legacy applications to your new chosen OS (OS Changer Porting Kit) 

• Development of embedded applications on Host environment (OS Simulator) 

• Convert Ada source code to C/C++ code (Ada-C/C++ Changer) 

• Application profiling and platform profiling for your APIs (App/Platform Profiler) 

• Generate API Profiling timing report and Profiling Timing comparison report 

(App/Platform Profiler) 

• Cross-OS Development Platform Features that includes:  

o Automatic configuration of any OS Changer and OS Abstractor APIs 

needed by the application  

o Custom configuration of OS & OS Abstractor resources needed by the 

application   

o Custom configuration of OS Abstractor for single or multi-application 

development (Process Feature support)  

o Full Source Library Package generation 

o Generation of project files for your IDE 

o Generated target code is optimized to contain only the APIs used by the 

application 

o Allows for further optimization by in-lining user selected API’s 

o Enables to convert Ada source code into C/C++ code 

• Target selection and configuration tabs to optimize the target code specific for 

your application  

o Target OS selection 

o Profiler configuration 

o Task configuration including a task pooling feature 

o Process configuration including a process feature 

o Memory configuration 

o Resource configuration 

o Debug configuration 

o Output configuration including the ability to output to a console or serial 

port 

o ANSI Mapping configuration 

o Device I/O configuration 

 



Application Common Operating Environment User Manual 
 

  40 

MapuSoft provides an illustration to describe all the components of AppCOE. AppCOE 
leverages the existing OS Changer and OS Abstractor technologies while adding advanced 

code optimization capacities on multiple OS environments. They are all interlinked and 

work closely as shown inFigure 3_1. 

Figure 3_1: AppCOE Components 

 
 

  



Application Common Operating Environment User Manual 
 

  41 

AppCOE Architecture 

 

Figure 3_2: AppCOE Architecture 

 

 
  



Application Common Operating Environment User Manual 
 

  42 

OS Simulator 

AppCOE simulates various OS interfaces such as VxWorks, pSOS, POSIX/LINUX, Windows, 

ThreadX and Nucleus on host development environments so users can develop embedded 

code with preferred OS APIs and without the target hardware. AppCOE’s state-of-the-art 

Eclipse based IDE offers seamless integration into existing development flows. 

With Application Common Operating Environment (AppCOE) you can easily port, abstract 
and optimize your code on a host machine and run the application on different target 

platforms. AppCOE leverages the existing OS Changer and OS Abstractor technologies while 

adding advanced code optimization capacities on multiple OS environments. AppCOE 

provides users an easy-to-use graphical user interface that is integrated with the Eclipse® 

based CDT environment. Target operating systems supported can be found here: 

http://mapusoft.com/products. 

This chapter includes the following topics: 

• List of Available OS Simulators 

• Host Development Environment 

• Creating an AppCOE C/C++ Project 

• C Project Template Files 

• HOST Defines 

• Adding Source Code Files to AppCOE C/C++ Project 

• Building Binary Files for a Project 

• Executing Binary Files 

• Debugging the Demos Supplied by MapuSoft 

• Debugging Using External Console/Terminal 

• Inserting Application Code to Run only on Host Environment 

• Inserting Application Code to Run only on Specific Target OS Environment 

• Updating Project Settings 

 

For more information on the host development refer to OS Simulator. 

  

http://mapusoft.com/products


Application Common Operating Environment User Manual 
 

  43 

OS Changer Porting kit  
 
The OS Changer family of products is COTS porting tools that give users the freedom to 

change operating systems while reusing their existing embedded code and knowledge base 

to protect their software investment and avoid costly porting issues. OS Changer also allows 

developers to write code using a familiar application programming interface (API) and run 

the application on a wide variety of supported target OS platforms. Solutions are available 
for porting from VxWorks, pSOS, Windows and Nucleus to many different real time (RTOS) 

and non-real time operating systems. Target operating systems supported can be found 

here: http://mapusoft.com/products/. 

OS Changer is designed for use as a C library. Services used inside your application 

software are extracted from the OS Abstractor libraries and are combined with the other 

application objects to produce the complete image. OS Changer is graphically represented 

in the follow as shown in Figure 3_3. 

Figure 3_3: OS Changer Porting kit 

 
For more information on the host development refer to OS Changer.  

http://mapusoft.com/products/


Application Common Operating Environment User Manual 
 

  44 

Cross-OS development Platform 

Developing a solid software architecture that can run on multiple operating systems 

requires considerable planning, development and testing as well as upfront costs associated 

with the purchase of various OS and tools to validate your software. MapuSoft’s OS 

Abstractor is an effective and economical software abstraction alternative for your 

embedded programming. By using OS Abstractor, your embedded application can run on 
many real time (RTOS) and non-real time operating systems to negate any porting issues in 

the future when your platform changes. Target operating systems supported can be found 

here: http://mapusoft.com/products. 

 

 OS Abstractor interface provides you a robust and standard OS interface architecture for 

flexible application development and portability while eliminating the risks associated with 
selecting an OS and dependency on a single vendor. OS Abstractor makes your application 

adapt to multiple operating system platforms with a standard OS interface, thereby 

reducing cost associated with code maintenance and learning multiple operating systems. 

OS Abstractor is designed for use as a fully scalable C library. Services used inside your 

application software are extracted from the OS Abstractor libraries and are combined with 
the other application objects to produce the complete image. This image may be 

downloaded to the target platform or placed in ROM on the target platform. Application 

developers need to specify the OS for the application and also include the required OS 

Abstractor libraries while building the application. Application developers can also select 

the individual OS Abstractor components that are needed and exclude the ones that are not 

required. 

OS Abstractor is graphically represented in the follow as shown in Figure 3_4 . 

Figure 3_4: Cross-OS development Platform 

 
For more information on the host development refer toCross-OS development Platform.  

http://mapusoft.com/products


Application Common Operating Environment User Manual 
 

  45 

Full Library Package Generator 

With Application Common Operating Environment (AppCOE) you can easily generate a 

source code package to create libraries and develop application using your own IDE. 

You can manually scale andconfigurethe product by modifying the user configuration file. 

AppCOE provides users an easy-to-use graphical user interface that is integrated with the 

Eclipse® based CDT environment. Target operating systems supported can be found here: 

http://mapusoft.com/products/. 

Full Source Library Package Generator chapter includes the following topics: 

• Generating Full Library Packages 

• How to Use Libraries with Your Application 

For more information on full source library package generator, refer to Full Library Package 

Generator. 

Optimized Target Code Generator 

With Application Common Operating Environment (AppCOE) you can easily port, abstract 
and optimize your code on a host machine and run the application on different target 

platforms. AppCOE leverages the existing OS Changer and OS Abstractor technologies while 

adding advanced code optimization capacities on multiple OS environments. AppCOE 

provides users an easy-to-use graphical user interface that is integrated with the Eclipse® 

based CDT environment. Target operating systems supported can be found here: 

http://mapusoft.com/products/. 

AppCOE reads application source code to determine the services used by your application 

and produces OS specific interface code optimized for your specific application and for each 

target OS platform. AppCOE gives you the ability to support multiple OS. It is also easily 

expandable to generate code for your proprietary OS. 

Optimized Target Code Generator chapter includes the following topics: 

• Generating Target Code 

• Generating Project Files for your Target 

• Running AppCOE Generated Code on your Target 

For more information on optimized target source code generator, refer to Optimized Target 

Code Generator. 

  

http://mapusoft.com/products/
http://mapusoft.com/products/


Application Common Operating Environment User Manual 
 

  46 

Ada-C/C++ Changer 

MapuSoft Technologies now offers the Ada-C/C++ Changer tools that convertsAda to C 

&give developers the ability to automatically convert legacy software written in Ada to the C 

programming language. This automatic code conversion process eliminates the need for a 

costly and tedious code re-write to provide developers extensive cost and time savings. Ada 

tool gives users peace of mind by providing an error free tool that prevents mistakes made 
in the error prone task of a manual rewrite. Ada tool supports converting Ada 83 and Ada 

95 source code and generates ANSI C output as well as certain C++ features while 

preserving the Ada code’s comments, files structures and variable names to ease ongoing 

code maintenance. 

For more information on using Ada-C/C++ Changer. 

 

App/Platform Profiler 

AppCOE enables you to view API performance data  

• The App/Platform Profiler feature enables API data collection 

• Collected data provides feedback concerning the utilization of MapuSoft’s APIs in the 

project 

• Reports allow for performance impact analysis by detailing API execution time 

• Offers area, bar, line, pie and scatter charts for data analysis 

• Generate API timing report and Timing comparison report 

• Platform API Profiling–System specific API profiling  

• Application Profiling–User specific API profiling 

Platforms Supported for App/Platform Profiler  

• VxWorks 6x® and VxWorks 5x® 

• Linux 2.4® and Linux 2.6® 

• LynxOS® and LynxOS-SE® 

• Solaris 

• Unix® 

• Windows CE® 

• Windows XP, Window 7 & Windows 8 ® 

• QNX® 

For more information on Profiling, refer to App/Platform Profiler. 
  



Application Common Operating Environment User Manual 
 

  47 

Chapter 4.Using OS Simulator 

This chapter contains the following topics: 

 

List of Available OS Simulators 

Host Development Environment 

Creating an AppCOE C/C++ Project 

AppCOE C/C++ Project Template Files 

Host System Configuration 

Creating AppCOE C/C++ Project with Multiple Interfaces 

Adding Source Code Files to AppCOE C/C++Project 

Building Your Project 

Executing Binary Files 

Debugging the Demos Supplied by MapuSoft 

Debugging Using External Console/Terminal 

Inserting Application Code to Run only on Host Environment 

Updating Project Settings 

  



Application Common Operating Environment User Manual 
 

  48 

 

List of Available OS Simulators 

The following is the list of available OS Simulators: 

• VxWorks 

• pSOS 

• Nucleus 

• POSIX/LINUX/Linux 

• uITRON 

• Windows 

• ThreadX 

• µC/OS 

• FreeRTOS 

Host Development Environment 

Host development needs a proper environment to run and build embedded programs. To 

develop an environment, you need the following GNU tools: 

• Eclipse IDE 

• MinGW 

• GNU Compiler 

• PAL Debugger 

Eclipse 

An IDE is a powerful set of tools in the Application Common Operating Environment 

(AppCOE) development suite. The IDE is based on the Eclipse Platform developed by 

Eclipse.org, an open consortium of tools vendors. 

The IDE incorporates into the Eclipse framework several AppCOE -specific plugins designed 

for building projects for target systems running on HOST. The tools suite provides a single, 
consistent, integrated environment; regardless of the host platform you are using Windows 

or Linux.  Plugins from most vendors should work within the Eclipse framework in the 

same way. 

NOTE: For more information on Eclipse and working on Eclipse framework, refer to 

http://www.eclipse.org/documentation/.  

MinGW 

MinGW, a contraction of "Minimalist GNU for Windows", is a port of the GNU Compiler 

Collection (GCC), and GNU Binutils, for use in the development of native Microsoft Windows 

applications. Offered in easily installed binary package format, for native deployment on 
MS-Windows, or user-built from source, for cross-hosted use on UNIX or GNU/Linux, the 

suite exploits Microsoft's standard system DLLs to provide the C-Runtime and Windows 

API. It is augmented by additional function libraries for improved ISO C-99 compatibility, 

and further, by community supported add-on tools and libraries, many pre-built, many 

more in the form of "mingw PORTs", to be built by the end user. 

MinGW provides a complete Open-Source programming tool set which is suitable for the 
development of native MS-Windows applications, and which do not depend on any 3rd-

party C-Runtime DLLs. 

  

http://www.eclipse.org/documentation/


Application Common Operating Environment User Manual 
 

  49 

 

GNU Compiler 

 
The GNU Compiler Collection includes front ends for C, C++, Java as well as libraries for 

these languages (such as libstdc++, libgcj). 

 

AppCOE Supplied GDB 

 
A debugger is a computer program that is used to test and debug other programs (the 

"target" program). The code to be examined might alternatively be running on an instruction 

set simulator (ISS), a technique that allows great power in its ability to halt when specific 
conditions are encountered but which will typically be somewhat slower than executing the 

code directly on the appropriate processor. Some debuggers offer two modes of operation - 

full or partial simulation to limit this impact. 

Typically, debuggers also offer more sophisticated functions such as running a program 

step by step (single-stepping or program animation), stopping (breaking) (pausing the 
program to examine the current state) at some event or specified instruction by means of a 

breakpoint, and tracking the values of some variables. Some debuggers have the ability to 

modify the state of the program while it is running, rather than merely to observe it. It may 

also be possible to continue execution at a different location in the program. 

The GNU Debugger, usually called just GDB and named gdb as an executable file, is the 

standard debugger for the GNU software system. It is a portable debugger that runs on 
many Unix-like systems and works for many programming languages. 

While working on AppCOE, you must use MapuSoft’s GNU Debugger, called as “AppCOE 

Supplied GDB”. 

 
  

http://gcc.gnu.org/libstdc++/
http://en.wikipedia.org/wiki/Computer_program
http://en.wikipedia.org/wiki/Debug
http://en.wikipedia.org/wiki/Instruction_Set_Simulator
http://en.wikipedia.org/wiki/Instruction_Set_Simulator
http://en.wikipedia.org/wiki/Program_animation
http://en.wikipedia.org/wiki/Breakpoint
http://en.wikipedia.org/wiki/Debugger
http://en.wikipedia.org/wiki/GNU
http://en.wikipedia.org/wiki/Unix-like
http://en.wikipedia.org/wiki/Programming_language


Application Common Operating Environment User Manual 
 

  50 

Creating an AppCOE C/C++ Project 

NOTE: This feature requires a license. Click http://mapusoft.com/downloads/AppCOE-

evaluation/ to request an evaluation license. 

 

To create an AppCOE C/C++ project: 

1. From AppCOE main window, select any project underC/C++ Projects tab on the left 

pane.  

2. Select New >AppCOE C/C++ Project as shown in Figure 4_1. 

 

Figure 4_1: Creating an AppCOE C Project 

 

 
  

http://mapusoft.com/downloads/AppCOE-evaluation/
http://mapusoft.com/downloads/AppCOE-evaluation/


Application Common Operating Environment User Manual 
 

  51 

3. On AppCOE C/C++ Project Wizard window, type a project name and give a location 

next to Project Name text box.  

4. Under Project Types, expand the Executable menu. Select AppCOE Template 

Project and click Next as shown inFigure 4_2. 

Figure 4_2: AppCOE C Project Wizard Window 

 



Application Common Operating Environment User Manual 
 

  52 

5. On Basic Settings window, define the basic properties of your project and click Next 

as shown inFigure 4_3. 

Figure 4_3: Basic Settings Window 

 



Application Common Operating Environment User Manual 
 

  53 

6. On Select Configurations window, select the platforms and configurations for 

deployment and click Next as shown in Figure 4_4. 

Figure 4_4: Configurations Window 

 



Application Common Operating Environment User Manual 
 

  54 

7. On Select APIs   Interface window, select the required AppCOE development APIs 
and click Finish as shown inFigure 4_5. 

Figure 4_5: Select APIs Window 

 

 

8. On Select Host Library Configuration window, select OS Abstractor Process Mode if 

the created application runs in multiple processas shown in Figure 4_6. 

 

 

 

 

 

 

 

 

 



Application Common Operating Environment User Manual 
 

  55 

Figure 4_6: Select Host Library Configuration Window 

 

 
 

 

  



Application Common Operating Environment User Manual 
 

  56 

 

You can see the output as shown inFigure 4_7. 

Figure 4_7: Creating AppCOE C/C++ Project Output 

 
  



Application Common Operating Environment User Manual 
 

  57 

AppCOE C/C++ Project Template Files 

 

To view the AppCOE C/C++ project template files, expand the project folder you have just 

created by clicking on the +sign beside the Project name as shown inFigure 4_8. 

Figure 4_8: AppCOE C/C++ Project Template Files 

 
You can view the following template files for your project on the left pane of the window: 

▪ __os_init__linux_host.c–This function is the entry function for the native operating 

system. This is where you should put any of your operating system specific code. For 

instance, if you want to add a signal handler on Linux host, you could do it here before 

calling OS_Main(). 

▪ __os_init_linux.c–This function is the entry function for the native operating system. This 

is where you should put any of your operating system specific code. For instance, if you 

want to add a signal handler on Linux, you could do it here before calling OS_Main(). 

▪ __os_init_lynxos.c– This function is the entry function for the native operating system. 

This is where you should put any of your operating system specific code. For instance, if 

you want to add a signal handler on LynxOS, you could do it here before calling 

OS_Main(). 

▪ __os_init_mqx.c–This function is the entry function for the native operating system. This 

is where you should put any of your operating system specific code. For instance, if you 

wanted to add a signal handler on MQX, you could do it here before calling OS_Main(). 

▪ __os_init_nucleus.c– This function is the entry function for the native operating system. 
This is where you should put any of your operating system specific code. For instance, if 

you wanted to add a signal handler on Nucleus, you could do it here before calling 

OS_Main(). 



Application Common Operating Environment User Manual 
 

  58 

▪ __os_init_qnx.c– This function is the entry function for the native operating system. This 
is where you should put any of your operating system specific code. For instance, if you 

wanted to add a signal handler on QNX, you could do it here before calling OS_Main(). 

▪ __os_init_solaris.c– This function is the entry function for the native operating system. 

This is where you should put any of your operating system specific code. For instance, if 

you want to add a signal handler on Solaris, you could do it here before calling 

OS_Main(). 

▪ __os_init_threadx.c– This function is the entry function for the native operating system. 

This is where you should put any of your operating system specific code. For instance, if 

you want to add a signal handler on ThreadX, you could do it here before calling 

OS_Main (). 

▪ __os_init_uitron.c– This function is the entry function for the native operating system. 
This is where you should put any of your operating system specific code. For instance, if 

you want to add a signal handler on micro-ITRON, you could do it here before calling 

OS_Main (). 

▪ __os_init_vxworks.c– This function is the entry function for the native operating system. 

This is where you should put any of your operating system specific code. For instance, if 
you want to add a signal handler on VxWorks, you could do it here before calling 

OS_Main (). 

▪ __os_init_windows_host.c–These functions are the various entry functions for the 

different operating systems. This is where you should put any of your operating system 

specific code. For instance, if you want to add a signal handler on Windows host, you 

could do it here before calling OS_Main ().When optimizing, you will need to write an 

equivalent function for your target operating system. 

▪ __os_init_windows.c– These functions are the various entry functions for the different 

operating systems. This is where you should put any of your operating system specific 

code. For instance, if you want to add a signal handler on Windows, you could do it here 

before calling OS_Main(). When optimizing, you will need to write an equivalent function 

for your target operating system. 

▪ __os_init_android.c–This function is the entry function for the native operating system. 

This is where you should put any of your operating system specific code. For instance, if 

you want to add a signal handler on android, you could do it here before calling OS_Main 

(). 

▪ __os_init_ucos.c–This function is the entry function for the native operating system. This 
is where you should put any of your operating system specific code. For instance, if you 

want to add a signal handler on uCOS, you could do it here before calling OS_Main(). 

▪ __os_init_netbsd.c–This function is the entry function for the native operating system. 

This is where you should put any of your operating system specific code. For instance, if 

you want to add a signal handler on NetBSD, you could do it here before calling OS_Main 

(). 

▪ os_application_start.c– This function is the first OS agnostic function and should be the 

start point for the application development. 

▪ os_library_init.c– This function initializes the required Interface products and creates the 

entry threads for each product. 

▪ os_main.c– This function initializes the  OS Abstractor Interface layer and calls 

OS_Application_Wait_For_End which will suspend until OS_Application_Free or 

OS_Delete_Process is called. It also spawns the first OS Independents thread which is the 

true entry point for OS Abstractor Interface. 

 

 

 

 

 



Application Common Operating Environment User Manual 
 

  59 

The application code starts in the os_library_init.c file, the user defined entry function and 

name of the application for OS Abstractor Interface can be specified in: 

 

#define OS_ABSTRACTOR_BASE_ENTRY_FUNCTION  

#define OS_APPLICATION_START_TASK_NAME 

 

For VxWorksInterface, the user defined entry function and stack size can be specified in: 

 

#define VXWORKS_ENTRY_FUNCTION 

#define VXWORKS_ENTRY_FUNCTION_STACK_SIZE 

 

Similarly, this is how it works for all the remaining changers/abstractors. 

 

You can insert code that is only included when they use AppCOE host in the following way: 

 

• For windows host you can insert code in __os_init_windows_host.c (inside main 

function before calling OS_MAIN), that is only included in AppCOE windows host.  

• For Linux host, you can insert code in __os_init_linux_host.c (inside main function 

before calling OS_MAIN), that is only included in AppCOE Linux host. 

 

You can insert code that is specific to a target OS (inside main function before calling 

OS_MAIN) in the following way: 

 

• For LynxOS target, insert in __os_init_lynxos.c 

• For mqx target, insert in __os_init_mqx.c 

• For Linux target, insert in __os_init_linux.c 

• For Nucleus target, insert in __os_init_nucleus.c 

• For QNX target, insert in __os_init_qnx.c 

• For Solaris target, insert in __os_init_solaris.c 

• For Threadx target, insert in __os_init_threadx.c 

• For uITRON target, insert in __os_init_uitron.c 

• For VxWorks target, insert in __os_init_vxworks.c 

• For Android target, insert in __os_init_android.c 

• For uCOS target, insert in __os_init_ucos.c 

• For NetBSD target, insert in __os_init_netbsd.c 

• For FreeRTOS target, insert in _os_init_freertos.c 



Application Common Operating Environment User Manual 
 

  60 

Host System Configuration 

The below defines are the system settings used by the OS_Application_Init() function. Use 

these to modify the settings when running on the host. A value of -1 for any of these will 

use the default values located in cross_os_usr.h. When you optimize for the target side 

code, the wizard will create a custom cross_os_usr.h using the settings you specify at that 

time so these defines will no longer be necessary. 

 

#define HOST_DEBUG_INFO                       -1 

#define HOST_TASK_POOL_TIMESLICE              -1 

#define HOST_TASK_POOL_TIMEOUT                -1 

#define HOST_ROOT_PROCESS_PREEMPT             -1 

#define HOST_ROOT_PROCESS_PRIORITY            -1 

#define HOST_ROOT_PROCESS_STACK_SIZE         -1 

#define HOST_ROOT_PROCESS_HEAP_SIZE          -1 

#define HOST_ROOT_PROCESS_AFFINITY -1 

#define HOST_DEFAULT_TIMESLICE                -1 

#define HOST_MAX_TASKS                         -1 

#define HOST_MAX_TIMERS                        -1 

#define HOST_MAX_MUTEXES                      -1 

#define HOST_MAX_PIPES                         -1 

#define HOST_MAX_PROCESSES                    -1 

#define HOST_MAX_QUEUES                       -1 

#define HOST_MAX_PARTITION_MEM_POOLS         -1 

#define HOST_MAX_DYNAMIC_MEM_POOLS           -1 

#define HOST_MAX_EVENT_GROUPS                 -1 

#define HOST_MAX_SEMAPHORES                   -1 

#define HOST_USER_SHARED_REGION1_SIZE        -1 

 

OS_HOST: This flag is used only in AppCOE environment. It is not used in the target 

environment. 

 

Host mode defines can be modified in os_main.c file. For example, modify maximum tasks 

under host environment in HOST_MAX_TASKS. 

 

NOTE: You can manually change the values in the Optimized Target Code GeneratorWizard. 

Refer to Generating Optimized Target Code chapter in the manual. 



Application Common Operating Environment User Manual 
 

  61 

Creating AppCOE C/C++ Project with Multiple Interfaces 

NOTE: This feature requires a license. Click http://mapusoft.com/downloads/AppCOE-

evaluation/ to request an evaluation license. 

To create AppCOE C/C++ project with multiple interfaces: 

1. From AppCOE main window, select any project underC/C++ Projects tab on the left 

pane.  

2. Select New >AppCOE C/C++ Project as shown inFigure 4_9. 

Figure 4_9: Creating a Project with Multiple Interfaces 

 
  

http://mapusoft.com/downloads/AppCOE-evaluation/
http://mapusoft.com/downloads/AppCOE-evaluation/


Application Common Operating Environment User Manual 
 

  62 

3. On AppCOE C Project Wizard window, type a project name and give a location next 

to Project Name text box.  

4. Under Project Types, expand the Executable menu. Select AppCOE Template 

Project and click Next as shown inFigure 4_10. 

Figure 4_10: AppCOE CProject Wizard Window 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 



Application Common Operating Environment User Manual 
 

  63 

5. On Basic Settings window, define the basic properties of your project and click Next 
as shown in Figure 4_11. 

Figure 4_11: Basic Settings Window 

 



Application Common Operating Environment User Manual 
 

  64 

6. On Select Configurations window, select the platforms and configurations for 

deployment and click Next as shown inFigure 4_12. 

Figure 4_12: Configurations Window 

 



Application Common Operating Environment User Manual 
 

  65 

7. On Select APIs window, select the required check box. In this example, we have 
shown Nucleus and VxWorks Interfaces API’s, selected. ClickFinishas shown in 

Figure 4_13. 

Figure 4_13: Select APIs Window. 

  
 

8. On Select Host Library Configuration window, if you checked OS Abstractor 

Process ModeEnabledoption, application runs in multiple Processes 

otherwiseapplication runs in Single Process as shown inFigure 4_14. 

  



Application Common Operating Environment User Manual 
 

  66 

Figure 4_14: Select Host Library Configuration 



Application Common Operating Environment User Manual 
 

  67 

You cansee the output as shown inFigure 4_15. 

Figure 4_15: A Project with multiple Interfaces Output 

 
 

  



Application Common Operating Environment User Manual 
 

  68 

Adding Source Code Files to AppCOE C/C++Project 

 

NOTE: This feature requires a license. Click http://mapusoft.com/downloads/AppCOE-

evaluation/to request an evaluation license. 

 

To add source code files: 

1. Select a project under C/C++ Projects pane.  

2. Right click on it and select Import as shown inFigure 4_16. 

Figure 4_16: Adding Source Code Files 

 

http://mapusoft.com/downloads/AppCOE-evaluation/
http://mapusoft.com/downloads/AppCOE-evaluation/


Application Common Operating Environment User Manual 
 

  69 

3. Select your import source from General > File System and thenclick Next 

4. Select the directory on your local file system which contains the source code files 

and click OK as shown inFigure 4_17. 

Figure 4_17: Importing Source Code Files from Directory 

 
  



Application Common Operating Environment User Manual 
 

  70 

5. Select the check boxes corresponding to the source code files you want to import 

and click Finish as shown inFigure 4_18 

Figure 4_18: Selecting Source Code Files for Importing 

 



Application Common Operating Environment User Manual 
 

  71 

6. You can view the source code files added to your AppCOE C/C++ project as shown 

inFigure 4_19. 

Figure 4_19: Importing Source Code Files Output 

 
 

7. Add the project include path by  right click your  created application project then Go 

to Properties,expand the  C/C++ Build > select Settingsand  then add Include path: 

“${workspace_loc:/${ProjName}/include}”as shown in Figure 4_20 

Figure 4_20: Add Project Include path 

 

 

  



Application Common Operating Environment User Manual 
 

  72 

Building Your Project  

 

NOTE: This feature requires a license. Click http://mapusoft.com/downloads/AppCOE-

evaluation/ to request an evaluation license.  

Creating an AppCOE C/C++ Project. 

  

http://mapusoft.com/downloads/AppCOE-evaluation/
http://mapusoft.com/downloads/AppCOE-evaluation/


Application Common Operating Environment User Manual 
 

  73 

Adding Source Code Files to AppCOE C/C++Project 

1. Select a project under C/C++ Projects pane, right click and select Build Project as 

shown inFigure 4_21 

Figure 4_21: Building Your Project 

 

2. Building process as shown in Figure 4_22 

Figure 4_22:  Building Process 

 



Application Common Operating Environment User Manual 
 

  74 

3. You can view how the binary files are built inFigure 4_23. 

Figure 4_23: Output for Building Binary Files for a Project 

 



Application Common Operating Environment User Manual 
 

  75 

Executing Binary Files 

To execute the binary in Windows host: 

1. Select Project that you have created. 

2. Select Created Application Project, right click and select Run As>Local C/C++ 

Application as shown inFigure 4_24. 

Figure 4_24: Executing the Binary File 

 



Application Common Operating Environment User Manual 
 

  76 

3. Getting the Run Time output into Console View  as shown inFigure 4_25. 

Figure 4_25: Binary Output 

 
Caution: 
 
If you try torebuild the createdApplication project whileexecutable of same Application 

project running in background under windows operating system, you will face permission 

denied Error that means you are not correctly terminated your previous executable file. 

Before clean& rebuild you any application in AppCOE, you make sure thatyour application 

is terminating correctly.  



Application Common Operating Environment User Manual 
 

  77 

Debugging the Demos Supplied by MapuSoft 

Example: Debugging the demo_cross_os application 

1. From AppCOE main window, select demo_cross_os project.  

2. Right click on the project and select Debug as >AppCOELocalC\C ++ Application 

or click on debugging icon as highlighted inFigure 4_26. 

Figure 4_26: Debugging the Demo Application 

 
NOTE: If the user uses the Debug dialog to create a new configuration then they need to 

select AppCOE Local C/C++ Application before creating. The other option is to not use the 
debug dialog, but instead select “AppCOE Local C/C++ Application" from the Debug 

asmenu. This method will create the correct configuration automatically. 

3. After selected the AppCOE Local Application for debugging, Confirm Perspective 

Switch window is to confirm the Debug Perspective support for debugging the 
application and it is displayed as shown inFigure 4_27, at a same time, windows 

command prompt is displayed as shown inFigure 4_28. 

Note: if the user used to open the Debug Perspective for debugging the application 

by click Yes button, then debugging progress is started as shown in Figure 4_29 

 

 

 



Application Common Operating Environment User Manual 
 

  78 

Figure 4_27: Confirm Perspective Switch window 

 

Figure 4_28: Confirm Perspective Switch window& Windows Command Prompt 

opened 

 

 Figure 4_29: Debugging Progress Information 

. 

  



Application Common Operating Environment User Manual 
 

  79 

4. Debugging stops at the main function. Click Resume icon (highlightedin red circle) 

to resume the debugging process as shown inFigure 4_30. 

Figure 4_30: Resume Debugging process 

 

5. The debugging resumes as shown inFigure 4_31. 

Figure 4_31: Debug Demo Application Perspective 

 



Application Common Operating Environment User Manual 
 

  80 

 

You can see the debugging on the console as shown inFigure 4_32. 

Figure 4_32: Debug Demo Application Output 

 

Note: If the user not use the Debug Perspective by click No button from Debug 

Perspective windows as shown inFigure 4_27. Debugging the Demo application from 

AppCOE only as shown in the Figure 4_33 andFigure 4_34 

Note: Best ways is user should use the Debug Perspective for debugging the demo 

application, because its only helps to views for displaying the debug stack, variables, 

breakpoint management. 

Figure 4_33: Debug Demo ApplicationUsing AppCOE 



Application Common Operating Environment User Manual 
 

  81 

 

Figure 4_34: Resume Debugging process 

 

 



Application Common Operating Environment User Manual 
 

  82 

Debugging Using External Console/Terminal 

Debugging can be done using an external console or terminal in the following way: 

1. From AppCOE main window, select the demo_cross_os project.  

2. Right click on the project and select Debug as > Debug Configuration as shown 

inFigure 4_35. 

Figure 4_35: Open Debug Dialog 

 



Application Common Operating Environment User Manual 
 

  83 

3. On Debug Configuration window, you can set your options for debugging as shown 
in Figure 4_36, 

 

NOTE: You must use MapuSoft Supplied GDB to execute debugging.  

 

NOTE: AppCOE does not support Cygwin tools and its use is not recommended. 

Figure 4_36: Debug Configuration Window 

 

4. You can change any of the options here and click Apply. 



Application Common Operating Environment User Manual 
 

  84 

5. Click Debug to execute debugging using the external console or Terminal. You can 

view the debugging process in your console as shown inFigure 4_37. 

Figure 4_37: Debugging Output Using External Console/Terminal 

 



Application Common Operating Environment User Manual 
 

  85 

6. To resume debugging, click the resume icon  on the debugging window as shown 

in Figure 4_38. 

Figure 4_38: Resume Debugging Using External Console/Terminal 

 



Application Common Operating Environment User Manual 
 

  86 

7. You have now successfully finished debugging by using external console or terminal 

as shown inFigure 4_39. 

Figure 4_39: Debugging in Progress 

 
  



Application Common Operating Environment User Manual 
 

  87 

Inserting Application Code to Run only on Host Environment 

 

The below defines are the system settings used by the OS_Application_Init() function.  Use 

these to modify the settings when running on the host. A value of -1 for any of these will 

use the default values located in cross_os_usr.h. 

When you optimize for the target side code, the wizard will create a custom cross_os_usr.h 

using the settings you specify at that time so these defines will no longer be necessary. 

You can add some application code or debug statements like printf, assert, which is mostly 

used in host environment only. This line of code will be ignored by the compiler in target 

environment. 

 
OS HOST Selection 

The flag has to be false for Full Source Library Package generation.  

Table4_1: OS HOST Selection 

 

Flag and Purpose Available Options 

OS_HOST 

To select the host operating 

system 

This flag is set as OS_TRUE by default in 

AppCOE environment.  

Target 64 bit CPU Selection 

Based on the OS you want the application to be built, set the following pre-processor 

definition in your project setting or make files: 

Table 4_2: Target 64-bit CPU Selection 

Flag and Purpose Available Options 

OS_CPU_64BIT 

To select the target CPU 

type. 

The value of OS_CPU_64BIT can be any ONE of 

the following: 

• OS_TRUE – Target CPU is 64 bit type CPU 

• OS_FALSE – Target CPU is 32 bit type CPU 

 

NOTE: In New C projects creation, the flag 

OS_CPU_64BIT will be set to OS_FALSE by 

default and user needs to make this true if they 
run on a 64-bit OS. 

  



Application Common Operating Environment User Manual 
 

  88 

Updating Project Settings 

 

AppCOE provides exclusive way to update the Projects Settings by just a click of a button. 

This is very useful in any one of the following cases: 

1. If the user has moved his workspace to a different location  

2. If the project requires new tool-chain that is installed recently  

The Update button performs an auto update on all the projects updates which include files, 

new directory structures, libraries, and tool-chains to the Project Settings.  

To update project settings: 

1. From AppCOE main menu select Tools > Update Settings or click AppCOE 

C/C++Project Settings button on AppCOE main menu or, as shown inFigure 

4_40. 

 

Figure 4_40: Updating Project Settings 

 

 



Application Common Operating Environment User Manual 
 

  89 

2. AppCOE does an auto search for the project updates and updates the settings as 

shown in the Project Settings Updating window inFigure 4_41 

Figure 4_41: AppCOE C/C++ Project Updates 

 

 

 

 

 

 

 

 

 

 

 

 



Application Common Operating Environment User Manual 
 

  90 

 

Chapter 5. Using OS Changer Porting Kit 

This chapter contains the following topics: 

 

About OS Changer 

Interfaces Available for OS Changer 

Using OS Changer 

Error Handling 

Porting VxWorks Applications 

Porting a WindRiver Workbench ‘C’ Project 

Porting VxWorks Legacy ‘C’ Code 

Manually Porting Legacy Applications using Import Feature 

Porting POSIX/LINUX Legacy ‘C’ Code 

Porting Applications from Nucleus PLUS Legacy Code to Target OS 

Porting Nucleus Legacy ‘C’ Code 

Porting Threadx Legacy ‘C’ Code  

Porting pSOS Legacy ‘C’ Code 

Porting micro-ITRON Legacy ‘C’ Code 

Porting Windows Legacy ‘C’ Code 

Porting ucos legacy ‘C’ Code 

Porting freertos legacy ‘C’ Code 

Porting VRTX legacy ‘C’ Code 

Porting QNX legacy ‘C’ Code 

Porting RTLinux legacy ‘C’ Code 

OS Changer VxWorks Interface 

OS Changer POSIX/LINUX Interface 

OS Changer Nucleus Interface 

OS Changer ThreadX Interface 

OS Changer pSOS Interface  

OS Changer micro-ITRON Interface 

OS Changer micro-ITRON Interface 

OS Changer micro-ITRON Interface 

OS Changer Windows Interface 

Building Application with Multiple Interface Components 

 

  



Application Common Operating Environment User Manual 
 

  91 

About OS Changer 

OS Changer allows you to reuse the code on any new OS without having to rewrite or port 

your code. This saves time and money by reducing the porting effort. 
OS Changer provides extensive support to various common proprietary libraries widely used 

by the application developers. Further, developers can use the native TARGET OS interface 

as well. This works toward getting the migration effort faster and much easier. 

 

Figure 5_1: About OS Changer 

 

 

 

OS Changer is designed for use as a C library. Services used inside your application 

software are extracted from the OS Changer and TARGET OS libraries, and, are then 

combined with the other application objects to produce the complete image. 

 

OS Changer is optimized to take full advantage of the underlying TARGET RTOS features. It 
is built to be totally independent of the target hardware and all the development tools (like 

compilers and debuggers).  

 

Please note that there may be some minor implementation differences in some of the OS 

Changer APIs when compared to the native API’s. This may be as a result of any missing 

features within the underlying RTOS that OS Changer provides migration to. 



Application Common Operating Environment User Manual 
 

  92 

 

Figure 5_2: OS Changer Flow Diagram 

Your legacy application can be re-usable and also portable by the support provided by the 

OS Changer library and the OS Abstractor library. Applications can directly use the native 

target OS API, however doing so will not make your code portable across operating systems. 

We recommend that you use the optimized abstraction APIs for the features and support 

that are not provided by the OS Changer compatibility library. 

NOTE: For more information on configuration and target OS specific information, see OS 

Abstractor Interface Reference Manual.  

 

Interfaces Available for OS Changer 

 
The following are the interfaces available for OS Changer: 

• VxWorks 

• Nucleus 

• pSOS 

• micro-ITRON 

• POSIX/LINUX 

• Windows 

• ThreadX 

• µC/OS  

• FreeRTOS 

• VRTX 

• QNX 

• RTLinux 



Application Common Operating Environment User Manual 
 

  93 

 

Using OS Changer 

OS Changer is designed for use as a C library. Services used inside your application 

software are extracted from the OS Changer and TARGET OS libraries, and, are then 

combined with the other application objects to produce the complete image. This image can 

be loaded to the target system or placed in ROM on the target system. 

 

The steps for using OS Changer are described in the following generic form: 

 

• Remove the TARGET RTOS header file defines from all the TARGET RTOS 

source files. 

• Remove definitions and references to all the TARGET RTOS configuration data 

structures in your application. 

• Include the TARGET RTOS_interface.h (For example, nucleus_interface.h in 

case of OS Changer Nucleus Interface) and os_target.h in the source files. 

• Modify the OS Changer init code (see sample provided) and the TARGET RTOS 

root task of your application appropriately. (For example, Application_Initialize)  

• Compile and link your application using appropriate development tools. Resolve 

all compiler and linker errors. 

• Port the underlying low-level drivers to Target OS. 

• Load the complete application image to the target system and run the 

application. 

• Review the processor and development system documentation for additional 

information, including specific details on how to use the compiler, assembler, 

and linker. 

 

Error Handling 

Applications receive a run-time error via the OS_Fatal_Error () function on some occasions. 

This happens due to: 

• Unsupported API function call, or 

• Unsupported parameter value or flag option in a API call, or 

• Error occurred on the target OS for which there are no matching error codes in 

OS Abstractor Interface. 

OS Changer calls OS_Fatal_Error and passes along an error code and error string. The 
OS_Fatal_Error handling function is fully customizable to the application needs. At the 

moment it prints the error message if the OS_DEBUG_INFO conditional compile option is 

set, then OS_Fatal_Error does not return. For more details on error handling and definition 

of this function, refer to the OS Abstractor Interface Reference Guide. The non-zero value in 

the error code corresponds to the underlying RTOS API error. Refer to the target OS 

documentation for a better description of the errors. Error Handling section lists the errors 

and the reasons for the occurrence.  

  



Application Common Operating Environment User Manual 
 

  94 

Porting VxWorks Applications 

Porting applications into the AppCOE host environment can be done in three different ways:  

1. Porting a WindRiver Workbench project 

2. Porting a Legacy application 

3. Manual porting using AppCOE 

Method 1– Porting a WindRiver Workbench ‘C’ Project 

NOTE: This feature requires a license. Click http://mapusoft.com/downloads/AppCOE-

evaluation/ to request an evaluation license. 

1. From AppCOE main window, select any project underC/C++ Projects tab on the left 

pane.  
2. Select Tools > Porting >VxWorks> Import Workbench ‘C’ Project as shown in 

Figure 5_3. You can also click on the Porting icon  from the task bar. 

Figure 5_3: Importing a VxWorks Workbench ‘C’ Project in AppCOE 

 

http://mapusoft.com/downloads/AppCOE-evaluation/
http://mapusoft.com/downloads/AppCOE-evaluation/


Application Common Operating Environment User Manual 
 

  95 

3. On AppCOE Import window, select a workspace directory to search for existing 

workbench projects by clicking on Browse button next to the text box, and click 

Next as shown inFigure 5_4. 

4. On Select Host Library Configuration window, select OS Abstractor Process Mode if 

the imported application runs in multiple process 
5. In Import Wind River Workbench Projects window, the projects list is displayed in a 

checkbox Tree. Application projects and Library projects are separated into 

respective categories. 

6. Select or deselect any one or all of the projects by selecting the check box next to the 

project name and click Finish to import the project as shown inFigure 5_4. 

Figure 5_4: AppCOE Import Window 

 
 

 

  



Application Common Operating Environment User Manual 
 

  96 

The following are the project types: 

• Application Projects - Provides an executable application. This project type folder 
contains three templates. The makefile for the Executable project type is 

automatically created by the CDT. 

• Library Projects- An executable module that is compiled and linked separately. 

When you create a project that uses a shared library (libxx.so), you define your 

shared library's project as a Project Reference for your application. The makefile for 
this project type is automatically created by the CDT. 

NOTE: Select the check box next to your required library or application project to be 

imported. 

7. If you select Application project, and click Finish, you get Application Start up Files 

windowas shown inFigure 5_5. 

Figure 5_5: Application Startup Files Window 

 

8. If you are importing a kernel application, click Yes to automatically create start up 

files to connect the imported application to the OS platform. 

NOTE: If you are porting a library project, click No to continue with the porting. 

9. If you select any application type project, provide the inputs for the project andclick 

OK as shown in Figure 5_6. If you do not want to provide the inputs, you can just 

click Cancel.  

 

 



Application Common Operating Environment User Manual 
 

  97 

 

Figure 5_6: Provide Inputs for Projects Window 

 

 
 

NOTE: If you select an application project and if it contains any referenced projects 
not selected by you, then a Confirmation dialogue box is displayed on your screen to 

ask if you want to port the project. If you want to port, click OK. You can see the 

porting processing results as shown in Figure 5_6 . 

After the porting is successfully done, the porting report page is displayed as shown 

inFigure 5_7, Click Done to complete the process. 

Figure 5_7: Porting Reports Page 

 



Application Common Operating Environment User Manual 
 

  98 

10. In order to successfully compile your application, follow the guidelines 
highlightedas shown inFigure 5_8. 

Figure 5_8: Porting Reports Page Guidelines 

 



Application Common Operating Environment User Manual 
 

  99 

11. In AppCOE C/C++ projects perspective, the ported projects are displayed as 
shown in Figure 5_9. 

Figure 5_9: Project Perspective of the Ported Projects 

 
 

You have successfully imported your VxWorks application to AppCOE. 

 

To know more about the project template files, go to AppCOE C/C++Project Template Files. 



Application Common Operating Environment User Manual 
 

  100 

Method 2–Porting VxWorks Legacy ‘C’ Code 

 

This section explains Porting VxWorks Legacy Applications using AppCOE Porting Plug-in. 

A sample porting of VxWorks Legacy application using AppCOE is described with an 

example here. 

 

NOTE:  

 

1. This feature requires a license. Click http://mapusoft.com/downloads/AppCOE-

evaluation/ to request an evaluation license. 

 

2. On OpenSuse 13.2, change the GTK2 Theme setting from "oxygen-gtk" to a different 
theme: 

 

• Click on the OpenSuse launcher icon and select "Configure Desktop". 

• On the dialog that appears, click on the "Application Appearance" icon. 

• Under both the Style and GTK sections, change any currently applied 

GTK, GTK2, or GTK3 settings such that any "Oxygen" related settings are 

change to a different setting.  For example, select the "GTK" icon and then 

on that view, for "Select a GTK2 Theme:” choose a different item, such as 

"Raleigh". 

• Click "Apply" to save changes. 
 

Changing the theme settings on OpenSUSE 13.2 

 

Select Tools> Porting >VxWorks> Import Legacy ‘C’ Code as shown inFigure 5_10. You 

can also click on the Porting icon  from the task bar. 

Figure 5_10: Porting VxWorks Legacy ‘C’ Code in AppCOE 

http://mapusoft.com/downloads/AppCOE-evaluation/
http://mapusoft.com/downloads/AppCOE-evaluation/


Application Common Operating Environment User Manual 
 

  101 

 

1. On AppCOE Import Window select the Import Application Project/Library Project 

radio button with reference to your project. Here we are considering importing an 

application project for example purpose. 

2. Select the root directory from where you want to import the legacy code by clicking 

on Browse button next to the text box, and click Next as shown inFigure 5_11. 

3. On Select Host Library Configuration window, select OS Abstractor Process Mode 

if the imported application runs in multiple processes. 

Figure 5_11: Import VxWorks Legacy Code Window 

 

4. Enter the project name for which you want to import the legacy code in the Project 

Name text box. 
5. Enter the root task prototype as int usrRoot(UNSIGNED argc);, next to Root Task 

Prototype text box. 



Application Common Operating Environment User Manual 
 

  102 

6. Enter the root task stack size, next to the Root Task Stack Size text box. The 

value should be in bytes.Note: By Default, Root Task Stack Size should be 

OS_MIN_STACK_SIZE, even though if you changed. 
7. Click Finish to complete the importing of legacy code into AppCOE.  

8. You have successfully imported the legacy vxWorks code and a project with your 

given project name is created in the current workspace as shown in Figure 5_12. 

Figure 5_12: ImportedvxWorks Legacy Code output 



Application Common Operating Environment User Manual 
 

  103 

Method 3– Manually Porting Legacy Applications using Import Feature 

Step 1:In your source code, remove references to the original OS include files and 

use os_target.h and the header files of your ported legacy API instead.  

1. Remove the original OS specific initialization code and use OS_Application_Init 
function call instead (refer to the OS Abstractor Interface Reference Manual).  

2. Create an AppCOE C/C++ project for your legacy application and select the 

legacy API that your application will need (E.g.: to port VxWorks application, you 

need to check the “Include OS Changer VxWorks Interface API’s”).  

3. If your application uses any APIs that are not supported under AppCOE, re-write 

the code using OS Abstractor Interface APIs.  

4. Import your legacy application into the new project.  

5. Compile and link your application and resolve all compiler and linker errors.  

6. Run or debug your application under AppCOE host in an x86 environment. You 

should rewrite/replace any hardware specific code in your application for this 

step.  

Step 2: Moving from AppCOE Host to target using AppCOE Optimized Target Code 

Generator:  

1) Generate the code for your target OS using the AppCOE Optimized Target 

Code Generator.  
2) Using cross-compiler compile, link, and download the AppCOE generated 

code to your target.  

3) Port low level drivers and hardware interrupt code as required (refer to 
OSAbstractor Interface I/O and device driver APIs sections in the OS 

Abstractor Reference Manual).  

4) Resolve any run time errors. 

  



Application Common Operating Environment User Manual 
 

  104 

Porting POSIX/LINUX Legacy ‘C’ Code 

This section explains Porting POSIX/LINUX Legacy Applications using AppCOE Porting 

Plugin. A sample porting of POSIX/LINUX Legacy applications using AppCOE is described 

with an example here. 

NOTE: This feature requires a license. Click http://mapusoft.com/downloads/AppCOE-

evaluation/ to request an evaluation license. 

To port a sample POSIX/LINUX legacy application: 

1. Select Tools> Porting >POSIX/LINUX> Import Legacy ‘C’ Code as shown inFigure 

5_13. You can also click on the Porting icon  from the task bar.  

Figure 5_13: Porting POSIX/LINUX Legacy ‘C’ Code in AppCOE 

 
  

http://mapusoft.com/downloads/AppCOE-evaluation/
http://mapusoft.com/downloads/AppCOE-evaluation/


Application Common Operating Environment User Manual 
 

  105 

3. On AppCOE Import Window select the Import Application Project/Library Project 
radio button with reference to your project. Here we are considering importing a 

application project for example purpose. 

4. Select the root directory from where you want to import the legacy code by clicking 

on Browse button next to the text box, and click Next as shown inFigure 5_13. 

Figure 5_13: Import POSIX/LINUX Legacy Code Window 

 

5. Enter the project name for which you want to import the legacy code in the Project 

Name text box. 

6. Enter the root task prototype asint px_main(int argc, char* argv[]), next to Root 

Task Prototype text box. 

7. Enter the root task stack size, next to the Root Task Stack Size text box. The value 

should be in bytes. 

  



Application Common Operating Environment User Manual 
 

  106 

8. Click Finish to complete the importing of legacy code into AppCOE. You can see 

POSIX/LINUX legacy code you have imported as shown in Figure 5_14. 

Figure 5_14 : Importing POSIX/LINUX Legacy Code Output 

 
 

You have successfully imported the POSIX/LINUX legacy C code and a project with 

your given project name is created in the current workspace. 

  



Application Common Operating Environment User Manual 
 

  107 

Porting Applications from Nucleus PLUS Legacy Code to Target OS 

In most applications, using Nucleus OS Changer is straightforward. The effort required in 

porting is mostly at the underlying driver layer. Since we do not have specific information 

about your application, it will be hard to tell how much work is required. However, we 

want you to be fully aware of the surrounding issues upfront so that necessary steps could 

be taken for a successful and timely porting. This section provides porting guidelines in a 
flow chart format. This covers issues relating with Nucleus OS Changer, device drivers, 

interrupt service routines, etc. It is possible that we have not addressed all your 

application specific issues in the flow chart, so for further information, contact MapuSoft 

Technologies. 

 

Figure 5_15: Porting Nucleus PLUS Applications 

Porting Nucleus PLUS
 
Applications to Linux - Guidelines

Chart A - Kernel APIs, interrupts and device drivers

START

No

Yes

CHECK 1

Does your application uses kernel APIs' that 

are un-supported in 

Nucleus PLUS OS Changer?

Happy Porting

Implement the 

unsupported APIs 

using 

OS Abstractor  or 

target OS APIs

No

Yes

CHECK 2

Does your application uses kernel APIs' that 

are partially supported by 

Nucleus PLUS OS Changer?

Modify your 

application to 

handle the 

differences

No

Yes

CHECK 3

Does your application configure the target 

hardware differently than default setup in 

Nucleus PLUS?

Modify the target OS 

BSPs to the desired 

target configuration

No

Yes

CHECK 4

Are you using Nucleus PLUS based

device drivers?

Port the device driver 

routines to target OS or 

modify application to use 

target OS drivers instead

No

Yes

CHECK 5

Are you using interrupt service routines that 

are not part of the Nucleus PLUS based 

device drivers?

Make changes if needed to 

make them to work under 

target OS

  



Application Common Operating Environment User Manual 
 

  108 

Porting Nucleus Legacy ‘C’ Code 

This section explains Porting Nucleus Legacy Applications using AppCOE Porting Plugin. A 

sample porting of Nucleus Legacy application using AppCOE is described with an example 

here. 

 

NOTE: This feature requires a license. Click http://mapusoft.com/downloads/AppCOE-

evaluation/to request an evaluation license. 

1. Select Tools> Porting > Nucleus > Import Legacy ‘C’ Code as shown inFigure 

5_16. You can also click on the Porting icon  from the task bar.  

Figure 5_16: Importing Nucleus Legacy ‘C’ Code in AppCOE 

 

http://mapusoft.com/downloads/AppCOE-evaluation/
http://mapusoft.com/downloads/AppCOE-evaluation/


Application Common Operating Environment User Manual 
 

  109 

2. On AppCOE Import Window select the Import Application Project/Library Project 

radio button with reference to your project. Here we are considering importing an 

application project for example purpose. 

3. Select the root directory from where you want to import the legacy code by clicking 

on Browse button next to the text box, and click Next as shown in Figure 5_17. 
4. On Select Host Library Configuration window, select OS Abstractor Process Mode 

if the imported application runs in multiple process 

Figure 5_17: Import Nucleus Legacy Code Window 

 

5. Enter the project name for which you want to import the legacy code in the Project 

Name text box. 

6. Enter the root task prototype asVOID NucleusRoot(UNSIGNEDargv,VOID*    argc);, 

next to Root Task Prototype text box. 
7. Enter the root task stack size, next to the Root Task Stack Size text box. The value 

should be in bytes. 

8. Enter the root task name, next to Root Task Nametext box. 

  



Application Common Operating Environment User Manual 
 

  110 

9. Click Finish to complete the importing of legacy code into AppCOE. You can see the 

output as shown inFigure 5_18. 

Figure 5_18: Importing Nucleus Code Output 

 
 

10.   You have successfully imported Nucleus legacy C code and a project with 

yourgiven project name is created in the current workspace. 

  



Application Common Operating Environment User Manual 
 

  111 

Porting Threadx Legacy ‘C’ Code  
This section explains Porting Threadx Legacy Applications using AppCOE Porting Plugin. A 

sample porting of Threadx Legacy application using AppCOE is described with an example 

here. 

 

NOTE: This feature requires a license. Click http://mapusoft.com/downloads/AppCOE-

evaluation/ to request an evaluation license. 

1. Select   Tools> Porting > ThreadX> Import Legacy ‘C’ Code as shown inFigure 

5_19. You can also click on the Porting icon  from the task bar.  

Figure 5_19: Importing ThreadX Legacy ‘C’ Code in AppCOE 

 
 

 

http://mapusoft.com/downloads/AppCOE-evaluation/
http://mapusoft.com/downloads/AppCOE-evaluation/


Application Common Operating Environment User Manual 
 

  112 

2. On AppCOE Import Window select the Import Application Project/Library Project 

radio button with reference to your project. Here we are considering importing a 

application project for example purpose. 

3. Select the root directory from where you want to import the legacy code by clicking 

on Browse button next to the text box, and click Next as shown inFigure 5_20.  
4. On Select Host Library Configuration window, select OS Abstractor Process Mode if 

the imported application runs in multiple process 

Figure 5_20: Import Threadx Legacy Code Window 

 
 

5. Enter the project name for which you want to import the legacy code in the Project 

Name text box. 

6. Enter the root task as a tx_kernel_enter(); prototype, next to Root Task Prototype 

text box. 

7. Enter the root task stack size, next to the Root Task Stack Size text box. The value 

should be in bytes. 

8. Enter the root task name, next to Root Task Nametext box. 

  



Application Common Operating Environment User Manual 
 

  113 

9. Click Finish to complete the importing of legacy code into AppCOE. You can see the 

output as shown in Figure 5_21. 

Figure 5_21: Importing Threadx Code Output 

 
10. You have successfully imported ThreadX legacy C code and a project with your given 

project name is created in the current workspace. 



Application Common Operating Environment User Manual 
 

  114 

Porting pSOS Legacy ‘C’ Code 

 

This section describes the sample porting of pSOS Legacy Applications using AppCOE 

Porting Plug-in. A description for porting pSOS Legacy applications using AppCOE is 

described with an example here. 

 

NOTE: This feature requires a license. Click http://mapusoft.com/downloads/AppCOE-

evaluation/ to request an evaluation license. 

1. Select Tools> Porting >pSOS> Import Legacy ‘C’ Code as shown inFigure 5_22, 

you can also click on the Porting icon  from the task bar.  

Figure 5_22: Importing pSOS Legacy ‘C’ Code in AppCOE 

 
  

http://mapusoft.com/downloads/AppCOE-evaluation/
http://mapusoft.com/downloads/AppCOE-evaluation/


Application Common Operating Environment User Manual 
 

  115 

3. On AppCOE Import Window select the Import Application Project/Library Project 
radio button with reference to your project. Here we are considering importing a 

application project for example purpose. 

4. Select the root directory from where you want to import the legacy code by clicking 

on Browse button next to the text box, and click Nextas shown Figure 5_23. 

5. On Select Host Library Configuration window, select OS Abstractor Process Mode if 

the imported application runs in multiple process 

Figure 5_23: Import pSOS Legacy Code Window 

 

6. Enter the project name for which you want to import the legacy code in the Project 

Name text box as shown in the Figure . 

7. Enter the root task prototype as   VOID Function_Root(ULONG argument);, next 

to Root Task Prototype text box as shown in the Figure 5_24. 

8. Enter the root task stack size, next to the Root Task Stack Size text box as shown 

in Figure 5_24.. The value should be in bytes. 

  



Application Common Operating Environment User Manual 
 

  116 

9. Click Finish to complete the importing of legacy code into AppCOE. You can see 

POSIX/LINUX legacy code you have imported as shown in Figure 5_24 . 

Figure 5_24: Importing pSOS Legacy Code Output 

 
 

10. You have successfully imported pSOS legacy C code and a project with your given 

project name is created in the current workspace. 

  



Application Common Operating Environment User Manual 
 

  117 

Porting micro-ITRON Legacy ‘C’ Code 

This section explains porting of micro-ITRON Legacy Applications using AppCOE Porting 

Plugin. A sample porting of micro-ITRON Legacy applications using AppCOE is described 

with an example here. 

NOTE: This feature requires a license. Click http://mapusoft.com/downloads/AppCOE-

evaluation/ to request an evaluation license. 

1. Select Tools> Porting >micro-ITRON> Import Legacy ‘C’ Code as shown inFigure 

5_25. You can also click on the Porting icon  from the task bar.  

Figure 5_25: Importing micro-ITRON Legacy ‘C’ Code in AppCOE 

 
  

http://mapusoft.com/downloads/AppCOE-evaluation/
http://mapusoft.com/downloads/AppCOE-evaluation/


Application Common Operating Environment User Manual 
 

  118 

3. On AppCOE Import Window select the Import Application Project/Library Project 
radio button with reference to your project. Here we are considering importing a 

application project for example purpose. 

4. Select the root directory from where you want to import the legacy code by clicking 

on Browse button next to the text box, and click Next as shown in Figure 5_26. 

5. On Select Host Library Configuration window, selectOS Abstractor Process Mode if 

the imported application runs in multiple process 

Figure 5_26: Import micro-ITRON Legacy Code Window 

 

6. Enter the project name for which you want to import the legacy code in the Project 

Name text box. 

7. Enter the root task prototype as a VOID uITRONRoot(UNSIGNED argv);, next to 

Root Task Prototype text box as shown in  Figure 5_27. 

8. Enter the root task stack size, next to the Root Task Stack Size text box as shown. 

The value should be in bytes. 

  



Application Common Operating Environment User Manual 
 

  119 

9. Click Finish to complete the importing of legacy code into AppCOE . You can see 

micro-ITRON legacy code you have imported as shown in Figure 5_27. 

Figure 5_27: Importing micro-ITRON Legacy Code Output 

 
 

10. You have successfully imported micro-ITRON legacy C code and a project with your 

given project name is created in the current workspace. 

  



Application Common Operating Environment User Manual 
 

  120 

Porting Windows Legacy ‘C’ Code 

This section explains porting of Windows Legacy Applications using AppCOE Porting Plug-

in. A sample porting of Windows Legacy applications using AppCOE is described with an 

example here. 

NOTE: This feature requires a license. Click http://mapusoft.com/downloads/AppCOE-

evaluation/ to request an evaluation license. 

1. Select Tools> Porting >Windows> Import Legacy ‘C’ Code as shown inFigure 

5_28. You can also click on the Porting icon  from the task bar.  

Figure 5_28: Importing Windows Legacy ‘C’ Code in AppCOE 

 
  

http://mapusoft.com/downloads/AppCOE-evaluation/
http://mapusoft.com/downloads/AppCOE-evaluation/


Application Common Operating Environment User Manual 
 

  121 

3. On AppCOE Import Window select the Import Application Project/Library Project 
radio button with reference to your project. Here we are considering importing a 

application project for example purpose. 

4. Select the root directory from where you want to import the legacy code by clicking 

on Browse button next to the text box, and click Next as shown inFigure 5_29.  

5. On Select Host Library Configuration window, select OS Abstractor Process Mode if 

the imported application runs in multiple process 

Figure 5_29: Import Windows Legacy Code 

 

6. Enter the project name for which you want to import the legacy code in the Project 

Name text box as shown in the Figure 5_29. 
7. Enter the root task prototype like int win_main(intargc); next to Root Task 

Prototype text box as shown in the Figure 5_29. 

8. Enter the root task stack size, next to the Root Task Stack Size text box as shown 

in the Figure 5_29. The value should be in bytes. 

  



Application Common Operating Environment User Manual 
 

  122 

9. Click Finish to complete the importing of legacy code into AppCOE. You can see 

Windows legacy C code you have imported as shown in Figure 5_30. 

Figure 5_30: Importing Windows Legacy Code Output 

 
 

You have successfully imported Windows legacy code and a project with your  given  project 

name is created in the current workspace. 

 

Note: Legacywindows is supported only when process mode is true, so the user might 

always check out the OS Abstractor Process Mode Enabled.  



Application Common Operating Environment User Manual 
 

  123 

Porting µC/OS Legacy ‘C’ Code 

This section explains porting of µC/OS Legacy Applications using AppCOE Porting Plugin. A 

sample porting of µC/OS Legacy applications using AppCOE is described with an example 

here. 

NOTE: This feature requires a license. Click http://mapusoft.com/downloads/AppCOE-

evaluation/ to request an evaluation license. 

1. Select Tools> Porting >µC/OS> Import Legacy ‘C’ Code as shown inFigure 5_31. 

You can also click on the Porting icon  from the task bar.  

Figure 5_31: Importing µC/OSLegacy ‘C’ Code in AppCOE 

 
  

http://mapusoft.com/downloads/AppCOE-evaluation/
http://mapusoft.com/downloads/AppCOE-evaluation/


Application Common Operating Environment User Manual 
 

  124 

3. On AppCOE Import Window select the Import Application Project/Library Project 
radio button with reference to your project. Here we are considering importing a 

application project for example purpose. 

4. Select the root directory from where you want to import the legacy code by clicking 

on Browse button next to the text box, and click Next as shown in Figure 5_32. 

5. On Select Host Library Configuration window, selectOS Abstractor Process Mode if 

the imported application runs in multiple process 

Figure 5_32: Import µC/OS Legacy Code Window 

 

6. Enter the project name for which you want to import the legacy code in the Project 

Name text box. 

7. Enter the root task prototype as VOID ApplicationTaskStart(VOID *p_arg);, next to 

Root Task Prototype text box as shown in Figure 5_32. 

8. Enter the root task stack size, next to the Root Task Stack Size text box as shown. 

The value should be in bytes. 

  



Application Common Operating Environment User Manual 
 

  125 

9. Click Finish to complete the importing of legacy code into AppCOE . You can see 

µC/OS legacy code you have imported as shown in Figure 5_33. 

Figure 5_33: Importing µC/OS Legacy Code Output 

 
 

10. You have successfully imported µC/OS legacy C code and a project with your given 

project name is created in the current workspace. 

 

  



Application Common Operating Environment User Manual 
 

  126 

Porting FreeRTOSLegacy ‘C’ Code 

This section explains porting of FreeRTOSLegacy Applications using AppCOE Porting 

Plugin. A sample porting of FreeRTOS Legacy applications using AppCOE is described with 

an example here. 

NOTE: This feature requires a license. Click http://mapusoft.com/downloads/AppCOE-

evaluation/ to request an evaluation license. 

1. Select Tools> Porting >FreeRTOS> Import Legacy ‘C’ Code as shown inFigure 

5_34. You can also click on the Porting icon  from the task bar.  

Figure 5_34: Importing FreeRTOSLegacy ‘C’ Code in AppCOE 

 
  

http://mapusoft.com/downloads/AppCOE-evaluation/
http://mapusoft.com/downloads/AppCOE-evaluation/


Application Common Operating Environment User Manual 
 

  127 

3. On AppCOE Import Window select the Import Application Project/Library Project 
radio button with reference to your project. Here we are considering importing a 

application project for example purpose. 

4. Select the root directory from where you want to import the legacy code by clicking 

on Browse button next to the text box, and click Next as shown in Figure 5_35. 

5. On Select Host Library Configuration window, select OS Abstractor Process Mode if 

the imported application runs in multiple process 

Figure 5_35: Import FreeRTOSLegacy Code Window 

 

6. Enter the project name for which you want to import the legacy code in the Project 

Name text box.  

7. Enter the root task prototype as void freeRTOSRoot(void*   param);, next to Root 

Task Prototype text box as shown inFigure 5_35. 

8. Enter the root task stack size, next to the Root Task Stack Size text box as shown. 

The value should be in bytes. 

  



Application Common Operating Environment User Manual 
 

  128 

9. Click Finish to complete the importing of legacy code into AppCOE . You can see 

FreeRTOSlegacy code you have imported as shown in Figure 5_36. 

Figure 5_36: Importing FreeRTOS Legacy Code Output 

 
 

10. You have successfully imported FreeRTOS legacy C code and a project with your 

given project name is created in the current workspace. 

 

 

Porting VRTXLegacy ‘C’ Code 

This section explains porting of VRTX Legacy Applications using AppCOE Porting Plugin. A 

sample porting of VRTX Legacy applications using AppCOE is described with an example 

here. 

NOTE: This feature requires a license. Click http://mapusoft.com/downloads/AppCOE-

evaluation/ to request an evaluation license. 

1. Select Tools> Porting >VRTX> Import Legacy ‘C’ Code as shown inFigure 5_37. 

You can also click on the Porting icon  from the task bar.  

Figure 5_37: Importing VRTX Legacy ‘C’ Code in AppCOE 

http://mapusoft.com/downloads/AppCOE-evaluation/
http://mapusoft.com/downloads/AppCOE-evaluation/


Application Common Operating Environment User Manual 
 

  129 

 

 

2. On AppCOE Import Window select the Import Application Project/Library Project 

radio button with reference to your project. Here we are considering importing a 

application project for example purpose. 

3. Select the root directory from where you want to import the legacy code by clicking 

on Browse button next to the text box, and click Next as shown in Figure 5_38. 

4. On Select Host Library Configuration window, select OS Abstractor Process Mode if 

the imported application runs in multiple process 

Figure 5_38: Import VRTX Legacy Code Window 



Application Common Operating Environment User Manual 
 

  130 

 

5. Enter the project name for which you want to import the legacy code in the Project 

Name text box.  

6. Enter the root task prototype as void vrtx_root_function();,next to Root Task 

Prototype text box as shown in Figure 5_38. 

7. Enter the root task stack size, next to the Root Task Stack Size text box as shown. 

The value should be in bytes. 

  



Application Common Operating Environment User Manual 
 

  131 

8. Click Finish to complete the importing of legacy code into AppCOE. You can see 

VRTXlegacy code you have imported as shown in Figure 5_39. 

Figure 5_39: Importing VRTX Legacy Code Output 

 
 

9. You have successfully imported VRTX legacy C code and a project with your given 

project name is created in the current workspace. 

 

 

Porting QNXLegacy ‘C’ Code 

This section explains porting of QNX Legacy Applications using AppCOE Porting Plugin. A 

sample porting of QNX Legacy applications using AppCOE is described with an example 

here. 

NOTE: This feature requires a license. Click http://mapusoft.com/downloads/AppCOE-

evaluation/ to request an evaluation license. 

1. Select Tools> Porting >QNX> Import Legacy ‘C’ Code as shown inFigure 5_40. You 

can also click on the Porting icon  from the task bar.  

Figure 5_40: Importing QNX Legacy ‘C’ Code in AppCOE 

http://mapusoft.com/downloads/AppCOE-evaluation/
http://mapusoft.com/downloads/AppCOE-evaluation/


Application Common Operating Environment User Manual 
 

  132 

 

 

2. On AppCOE Import Window select the Import Application Project/Library Project 

radio button with reference to your project. Here we are considering importing a 

application project for example purpose. 

3. Select the root directory from where you want to import the legacy code by clicking 

on Browse button next to the text box, and click Next as shown in Figure 5_41. 

4. On Select Host Library Configuration window, select OS Abstractor Process Mode if 

the imported application runs in multiple process 

Figure 5_41: Import QNXLegacy Code Window 



Application Common Operating Environment User Manual 
 

  133 

 

5. Enter the project name for which you want to import the legacy code in the Project 

Name text box.  
6. Enter the root task prototype as VOID root_thread_entry_function( void 

*arg1);,next to Root Task Prototype text box as shown in Figure 5_41. 

7. Enter the root task stack size, next to the Root Task Stack Size text box as shown. 

The value should be in bytes. 

  



Application Common Operating Environment User Manual 
 

  134 

8. Click Finish to complete the importing of legacy code into AppCOE. You can see 

QNXlegacy code you have imported as shown in Figure 5_42. 

Figure 5_42: Importing QNX Legacy Code Output 

 
 

9. You have successfully imported QNX legacy C code and a project with your given 

project name is created in the current workspace. 

 

 

Porting RTLINUXLegacy ‘C’ Code 

This section explains porting of RTLINUX Legacy Applications using AppCOE Porting 

Plugin. A sample porting of RTLINUX Legacy applications using AppCOE is described with 

an example here. 

NOTE: This feature requires a license. Click http://mapusoft.com/downloads/AppCOE-

evaluation/ to request an evaluation license. 

1. Select Tools> Porting >RTLINUX> Import Legacy ‘C’ Code as shown inFigure 

5_43. You can also click on the Porting icon  from the task bar.  

Figure 5_43: Importing RTLINUX Legacy ‘C’ Code in AppCOE 

http://mapusoft.com/downloads/AppCOE-evaluation/
http://mapusoft.com/downloads/AppCOE-evaluation/


Application Common Operating Environment User Manual 
 

  135 

 

 

2. On AppCOE Import Window select the Import Application Project/Library Project 

radio button with reference to your project. Here we are considering importing a 

application project for example purpose. 

3. Select the root directory from where you want to import the legacy code by clicking 

on Browse button next to the text box, and click Next as shown in Figure 5_44. 

4. On Select Host Library Configuration window, select OS Abstractor Process Mode if 

the imported application runs in multiple process 

Figure 5_44: Import RTLINUX Legacy Code Window 



Application Common Operating Environment User Manual 
 

  136 

 

5. Enter the project name for which you want to import the legacy code in the Project 

Name text box.  
6. Enter the root task prototype as VOID * rtlinux_root_function(void * arg);,next to 

Root Task Prototype text box as shown in Figure 5_44. 

7. Enter the root task stack size, next to the Root Task Stack Size text box as shown. 

The value should be in bytes. 

  



Application Common Operating Environment User Manual 
 

  137 

8. Click Finish to complete the importing of legacy code into AppCOE. You can see 

RTLINUXlegacy code you have imported as shown in Figure 5_45. 

Figure 5_45: Importing RTLINUX Legacy Code Output 

 
 

9. You have successfully imported RTLINUX legacy C code and a project with your 

given project name is created in the current workspace. 

 

 

 

 

  



Application Common Operating Environment User Manual 
 

  138 

Building OS Abstractor Interface Library 

Before using OS Abstractor Interface, make sure the OS and tools are configured correctly 

for your target. To ensure this, compile, link and execute a native sample demo application 

that is provided by the OS vendor on your target. Refer to the OS vendor provided 

documentation on how to compile, link, download, and debug the demo applications for 

your specific target and toolset. After this step, you are ready to use the OS Abstractor 

Interface library to develop your applications. 

 

Building OS Abstractor Interface Demo Application 

The demo application is located at the \mapusoft\demo_cross_os directory location. From 

this location, you will find the make files or project files at the appropriate 

specific/<OS>/<tool>/<target> directory. For instance, if you need the demo application to 
be built for Windows OS using visual studio 12 tools and for x86 target, then the make file 

location will be at specific\windows\x86\vsnet2012 directory. 

 

OS Changer VxWorks Interface 

The OS Changer Nucleus Interface library contains the following modules 

Table 5_1: VxWorks Interface Header File 

Module Description 
vxworks_interface.h This header file is required in all of the VxWorks   

source modules. This header file provides the 
translation layer between the VxWorks defines, APIs 
and parameters to OS Abstraction 

 

The OS Changer VxWorks Interface OS Changer OS Changer VxWorks Interface demo 

contains the following modules: 

Table 5_2:  VxWorks Interface Demo Application File 

Module Description 
demo.c Contains a sample demo application 
  

Building OS Changer VxWorks Interface 

Before building the VxWorks Interface library and/or application, ensure that the flag 

INCLUDE_OS_VxWorks is set to OS_TRUE in the cross_os_usr.h configuration file. 

 

Building OS Changer VxWorks Interface Library 

The VxWorksInterface library is located at \mapusoft\ vxworks_interface directory. From 

this location, you will find the make files or project files at the appropriate 
specific/<OS>/<tool>/<target> directory.  For instance, if you need the demo application to 

be built for VxWorks OS using Eclipse tools and for x86 targets, then the make file location 

will be at specific\vxworks\<OS>\x86\eclipse directory. 

 

Building OS Changer VxWorks Interface Demo Application 

The demo application is located at the \mapusoft\ demo_vxworks directory location. From 
this location, you will find the make files or project files at the appropriate 

specific/<OS>/<tools>/<target> directory.  For instance, if you need the demo application 

to be built for VxWorks OS using Eclipse tools and for x86 targets, then the make file 

location will be at specific\vxworks_interface\<OS>\x86\eclipse directory. 

 



Application Common Operating Environment User Manual 
 

  139 

 

 

OS Changer POSIX/LINUX Interface 

The OS Changer POSIX/LINUX Interface library contains the following modules: 

 

Table 5_3: Posix Interface Header File 

Module Description 
posix_interface.h This header file is required in all of the POSIX/LINUX 

source modules. This header file provides the 
translation layer between the POSIX/LINUX defines, 
APIs and parameters to OS Abstraction 

The POSIX/LINUX Interface demo contains the following modules: 

Table 5_4:  POSIX/LINUX Interface Demo Application File 

Module Description 
demo.c Contains a sample demo application 

Building OS Changer POSIX/LINUXInterface 

Before building the POSIX/LINUX Interface library and/or application, ensure that the flags 

INCLUDE_OS_POSIX is set to OS_TRUE in the cross_os_usr.h configuration file.  

Building OS Changer POSIX/LINUX Interface Library 

The OS Changer POSIX/LINUX Interface library is located at \mapusoft\posix_interface 
directory. From this location, you will find the make files or project files at the appropriate 

specific/<OS>/<tool>/<target> directory. For instance, if you need the demo application to 

be built for POSIX/LINUX OS using Eclipse tools and for x86 targets, then the make file 

location will be at specific\posix\<OS>\x86\elipse directory. 

BuildingOS ChangerPOSIX/LINUX Interface Demo Application 

The demo application is located at the \mapusoft\demo_posix directory location. From this 

location, you will find the make files or project files at the appropriate 

specific/<OS>/<tools>/<target> directory. For instance, if you need the demo application to 

be built for POSIX/LINUX OS using Eclipse tools and for x86 target, then the make file 

location will be at specific\posix\<OS>\x86\eclipse directory. We need to have the OS 

Abstractor Interface Library. It has to be included in all the Interface demos.  

After every demo application, include/link in the POSIX/LINUX Interface library. 

 

OS Changer Nucleus Interface 

The OS Changer Nucleus Interface library contains the following modules: 

Table 5_5: Nucleus Interface Header File 

 

Module Description 
nucleus_interface.h This header file is required in all of the Nucleus PLUS 

source modules. This header file provides the 
translation layer between the Nucleus PLUS defines, 
APIs and parameters to OS Abstraction 

The OS Changer Nucleus Interface demo contains the following modules: 

Table 5_6:  Nucleus Interface Demo Application File 

Module Description 
demo.c Contains a sample demo application 



Application Common Operating Environment User Manual 
 

  140 

Building OS Changer Nucleus Interface 

Before building the OS Changer Nucleus Interface library and/or application, ensure that 

the flag INCLUDE_OS_Nucleus is set to OS_TRUE in the cross_os_usr.h configuration file. 

Building OS Changer Nucleus Interface Library 

The Nucleus Interface library is located at \mapusoft\nucleus_interface directory. From 

this location, you will find the make files or project files at the appropriate 
specific/<OS>/<tool>/<target> directory.  For instance, if you need the demo application to 

be built for Nucleus OS using Eclipse tools and for x86 targets, then the make file location 

will be at specific\nucleus\<OS>\x86\eclipse directory. 

Building OS Changer Nucleus Interface Demo Application 

The demo application is located at the \mapusoft\ demo_nucleus directory location. From 

this location, you will find the make files or project files at the appropriate 
specific/<OS>/<tools>/<target> directory.  For instance, if you need the demo application 

to be built for Nucleus OS using Eclipse tools and for x86 targets, then the make file 

location will be at specific\nucleus\<OS>\x86\eclipse directory. 

OS Changer ThreadX Interface 

The OS Changer ThreadX Interface library contains the following modules: 

Table 5_7: ThreadX Interface Header File 

 

Module Description 
threadx_interface.h This header file is required in all of the ThreadX 

source modules. This header file provides the 
translation layer between the ThreadX  defines, APIs 
and parameters to OS Abstraction 

 

The OS Changer ThreadX Interface demo contains the following modules: 

Table 5_8:  Nucleus Interface Demo Application File 

Module Description 
demo.c Contains a sample demo application 

Building OS Changer ThreadX Interface 

Before building the OS Changer ThreadX Interface library and/or application, ensure that 

the flag INCLUDE_OS_ThreadX is set to OS_TRUE in the cross_os_usr.h configuration file. 

Building OS Changer ThreadX Interface Library 

The ThreadX Interface library is located at \mapusoft\ThreadX_interface directory. From 

this location, you will find the make files or project files at the appropriate 
specific/<OS>/<tool>/<target> directory.  For instance, if you need the demo application to 

be built for ThreadX OS using Eclipse tools and for x86 target, then the make file location 

will be at specific\ThreadX\<OS>\x86\eclipse directory. 

Building OS Changer ThreadX Interface Demo Application 

The demo application is located at the \mapusoft\ demo_ThreadX directory location. From 

this location, you will find the make files or project files at the appropriate 
specific/<OS>/<tools>/<target> directory.  For instance, if you need the demo application 

to be built for ThreadX OS using Eclipse tools and for x86 target, then the make file 

location will be at specific\ThreadX\<OS>\x86\eclipse directory. 

OS Changer pSOS Interface  
The pSOS Interface library contains the following modules: 



Application Common Operating Environment User Manual 
 

  141 

 

Table 5_9: pSOS Interface Header File 

Module Description 
psos_interface.h This header file is required in all of the pSOS source 

modules. This header file provides the translation 
layer between the pSOS defines, APIs and parameters 
to OS Abstraction 

The pSOS Interface demo contains the following modules: 

Table 5_10:  pSOS Interface Demo Application File 

 

Module Description 
demo.c Contains a sample demo application 

Building OS Changer pSOS Interface 

Before building the pSOS Interface library and/or application, ensure that the flag 

INCLUDE_OS_pSOS is set to OS_TRUE in the cross_os_usr.h configuration file. 

Building OS Changer pSOS Interface Library 

The pSOS Interface library is located at \mapusoft\ psos_interface directory. From this 

location, you will find the make files or project files at the appropriate 

specific/<OS>/<tool>/<target> directory.  For instance, if you need the demo application to 

be built for pSOS OS using Eclipse tools and for x86 target, then the make file location will 

be at specific\psos_interface/<OS>\x86\eclipse directory. 

Building OS Changer pSOS Interface Demo Application 

The demo application is located at the \mapusoft\ demo_pSOS directory location. From 

this location, you will find the make files or project files at the appropriate 

specific/<OS>/<tools>/<target> directory.  For instance, if you need the demo application 

to be built for pSOS OS using eclipse tools and for x86 target, then the make file location 

will be at specific\psos\<OS>\x86\eclipse directory. 

 

OS Changer micro-ITRON Interface 

The OS Changer micro-ITRON Interface library contains the following modules: 

Table 5_11: OS Changer micro-ITRON Interface Header File 

Module Description 
uitron_interface.h This header file is required in all of the uITRON source 

modules. This header file provides the translation 
layer between the uITRON defines, APIs and 
parameters to OS Abstraction 

 

The OS Changer micro-ITRON Interface demo contains the following modules: 

Table 5_12: OS Changer micro-ITRON Interface Demo Application File 

Module Description 
demo.c Contains a sample demo application 

Building OS Changer micro-ITRON Interface 

Before building the OS Abstractor micro-ITRON Interface library and/or application, ensure 

that the flag INCLUDE_OS_UITRON is set to OS_TRUE in the cross_os_usr.h configuration 

file.  



Application Common Operating Environment User Manual 
 

  142 

 

Building OS Changer micro-ITRON Interface Library 

The OS Abstractor micro-ITRON Interface library is located at \mapusoft\uitron_interface 

directory. From this location, you will find the make files or project files at the appropriate 

specific/<OS>/<tool>/<target> directory. For instance, if you need the demo application to 

be built for uITRON OS using Eclipse tools and for x86 target, then the make file location 

will be at specific\uitron\<OS>\x86\eclipse directory. 

Building OS Changer micro-ITRON Interface Demo Application 

The demo application is located at the \mapusoft\demo_uitron directory location. From this 

location, you will find the make files or project files at the appropriate 

specific/<OS>/<tools>/<target> directory.  For instance, if you need the demo application 

to be built for micro-ITRON OS using Eclipse tools and for x86 targets, then the make file 

location will be at specific\uitron\<OS>\x86\eclipse directory. 

 

OS Changer µC/OS Interface 

The µC/OS Interface library contains the following modules: 

Table 5_13: OS Changer µC/OSInterface Header File 

Module Description 
ucos_interface.h This header file is required in all of the uCOS source 

modules. This header file provides the translation 
layer between the uCOS defines, APIs and parameters 
to OS Abstraction 

The µC/OS Interface demo contains the following modules: 

Table 5_14:  µC/OS Interface Demo Application File 

Module Description 
demo.c Contains a sample demo application 

Building OS Changer µC/OS Interface 

Before building the OS Abstractor µC/OS Interface library and/or application, ensure that 

the flag INCLUDE_OS_UCOS is set to OS_TRUE in the cross_os_usr.h configuration file.  

Building OS Changer µC/OS Interface Library 

The OS Abstractor µC/OS Interface library is located at \mapusoft\ucos_interface 
directory. From this location, you will find the make files or project files at the appropriate 

specific/<OS>/<tool>/<target> directory. For instance, if you need the demo application to 

be built for µC/OS using Eclipse tools and for x86 target, then the make file location will be 

at specific\ucos\<OS>\x86\eclipse directory. 

Building OS Changer µC/OS Interface Demo Application 

The demo application is located at the \mapusoft\demo_ucos directory location. From this 

location, you will find the make files or project files at the appropriate 

specific/<OS>/<tools>/<target> directory.  For instance, if you need the demo application 

to be built for µC/OS using Eclipse tools and for x86 targets, then the make file location will 

be at specific\ucos\<OS>\x86\eclipse directory. 

 

OS Changer FreeRTOS Interface 

The FreeRTOS Interface library contains the following modules: 



Application Common Operating Environment User Manual 
 

  143 

 

 

Table 5_15: OS Changer FreeRTOSInterface Header File 

Module Description 
freertos_interface.h This header file is required in all of the freertos source 

modules. This header file provides the translation 
layer between the freertos defines, APIs and 
parameters to OS Abstraction 

The freertos Interface demo contains the following modules: 

Table 5_16:  FreeRTOSInterface Demo Application File 

Module Description 
demo.c Contains a sample demo application 

Building OS Changer FreeRTOS Interface 

Before building the OS Abstractor freertos Interface library and/or application, ensure that 
the flag INCLUDE_OS_FREERTOS is set to OS_TRUE in the cross_os_usr.h configuration 

file.  

Building OS Changer FreeRTOS Interface Library 

The OS Abstractor freertos Interface library is located at \mapusoft\freertos_interface 

directory. From this location, you will find the make files or project files at the appropriate 
specific/<OS>/<tool>/<target> directory. For instance, if you need the demo application to 

be built for freertos using Eclipse tools and for x86 target, then the make file location will be 

at specific\freertos\<OS>\x86\eclipse directory. 

Building OS Changer FreeRTOS Interface Demo Application 

The demo application is located at the \mapusoft\demo_freertos directory location. From 

this location, you will find the make files or project files at the appropriate 
specific/<OS>/<tools>/<target> directory.  For instance, if you need the demo application 

to be built for freertos using Eclipse tools and for x86 targets, then the make file location 

will be at specific\freertos\<OS>\x86\eclipse directory. 

 

OS Changer RTLinux Interface 

The RTLinux Interface library contains the following modules: 

Table 5_17: OS Changer RTLinuxInterface Header File 

Module Description 
rtlinux_interface.h This header file is required in all of the rtlinux source 

modules. This header file provides the translation 
layer between the rtlinux defines, APIs and 
parameters to OS Abstraction 

The rtlinux Interface demo contains the following modules: 

Table 5_18: RTLinux Interface Demo Application File 

Module Description 
demo.c Contains a sample demo application 

Building OS Changer RTLinux Interface 

Before building the OS Abstractor rtlinux Interface library and/or application, ensure that 

the flag INCLUDE_OS_RTLINUX is set to OS_TRUE in the cross_os_usr.h configuration file.  



Application Common Operating Environment User Manual 
 

  144 

 

Building OS Changer RTLinux Interface Library 

The OS Abstractor rtlinux Interface library is located at \mapusoft\rtlinux_interface 

directory. From this location, you will find the make files or project files at the appropriate 

specific/<OS>/<tool>/<target> directory. For instance, if you need the demo application to 

be built for rtlinux using Eclipse tools and for x86 target, then the make file location will be 

at specific\rtlinux\<OS>\x86\eclipse directory. 

Building OS Changer RTLinux Interface Demo Application 

The demo application is located at the \mapusoft\demo_rtlinux directory location. From 

this location, you will find the make files or project files at the appropriate 

specific/<OS>/<tools>/<target> directory.  For instance, if you need the demo application 

to be built for rtlinux using Eclipse tools and for x86 targets, then the make file location will 

be at specific\rtlinux\<OS>\x86\eclipse directory. 

 

OS Changer Windows Interface 

The OS Changer Windows Interface library contains the following modules: 

Table 5_19: OS Changer Windows Interface Header File 

Module Description 
windows_interface.h This header file is required in all of the Windows 

source modules. This header file provides the 
translation layer between the Windows defines, APIs 

and parameters to OS Abstraction 

The Windows Interface demo contains the following modules: 

Table 5_20:  Windows Interface Demo Application File 

Module Description 
demo.c Contains a sample demo application 

Building OS Changer Windows Interface 

Before building the WINDOWS Interface library and/or application, ensure that the flags 

INCLUDE_OS_WINDOWS and INCLUDE_OS_PROCESS are set to OS_TRUE in the 

cross_os_usr.h configuration file.  

Building OS Changer Windows Interface Library 

The WINDOWS Interface library is located at \mapusoft\windows_interface directory. From 

this location, you will find the make files or project files at the appropriate 

specific/<OS>/<tool>/<target> directory. For instance, if you need the demo application to 

be built for WINDOWS OS using Eclipse tools and for x86 target, then the make file location 

will be at specific\windows\<OS>\x86\eclipse directory. 

Building OS Changer Windows Interface Demo Application 

The demo application is located at the \mapusoft\demo_windows directory location. From 

this location, you will find the make files or project files at the appropriate 

specific/<OS>/<tools>/<target> directory. For instance, if you need the demo application to 

be built for Windows OS using Eclipse tools and for x86 target, then the make file location 
will be at specific\windows\<OS>\x86\eclipse directory. We need to have the OS Abstractor 

Interface Library. It has to be included in all the Interface demos.  

Building Application with Multiple Interface Components 

MapuSoft provides a feature to build application with multiple interfaces. For example; you 

can build an application with both Nucleus and VxWorks interfaces.  



Application Common Operating Environment User Manual 
 

  145 

Building Application with Multiple Interfaces 

Before building the multiple Interface library and/or application, ensure that the 

corresponding flags are set to OS_TRUE in the cross_os_usr.h configuration file.  

For instance; If you want to build an application with both Nucleus and VxWorks 

interfaces, set INCLUDE_OS_NUCLEUS and INCLUDE_OS_VXWORKSasOS_TRUE. 

Developing Applications with Multiple Interfaces 

The steps for developing applications on host targets are described as follows: 

1. Include os_target.h in all your application source files. 

2. Set the appropriate compiler switches within the project build files to indicate the 

target OS and other target configurations. 

3. Initialize the OS Abstractor library by calling OS_Application_Init() function. If you 
are also using POSIX/LINUX Interface, then also use OS_Posix_Init() function call 

to initialize the POSIX/LINUX component as well. For instance, to develop an 

application with both Nucleus and VxWorks application development, go to 

os_library_init.c and give your appropriate entry function in 

NUCLEUS_ENTRY_FUNCTION. Define the name of the Nucleus entry task. The 
default entry task is NU_ROOT. Give your appropriate entry function in 

VXWORKS_ENTRY_FUNCTION. You also have to give the appropriate stack size for 

your entry function in VXWORKS_ENTRY_FUNCTION_STACK_SIZE. The default 

stack size given by MapuSoft is OS_MIN_STACK_SIZE. In the main thread, call 

OS_Application_Wait_For_End() function to suspend the main thread and wait for 

application re-start or termination requests. 

4. Compile and link your application using development tools provided by Mapusoft. 

5. Download the complete application image to the target system and let it run. 

 

Refer to the sample demo applications provided with OS Abstractor as a reference point to 

start your application. Please review the target processor and development tools 
documentation for additional information, including specific details on how to use the 

compiler, assembler, and linker.  



Application Common Operating Environment User Manual 
 

  146 

Chapter 6: Using Cross-OS Development platform 

Cross-OS Development Platform provides you a robust and industry standard OS interface 

architecture for flexible application development while allowing the user to protect the 

software from being locked to one OS. Cross-OS Development Platform makes your 

application adapt to multiple operating system, reduces cost associated with code 
maintenance, need for learning multiple operating systems and eliminates the risk 

associated with the OS selection process. 

 

This chapter contains the following topics: 

 

About Cross-OS Development Platform 

About OS Abstractor 

Interfaces Available for OS Abstractor 

Developing OS Abstractor or Cross-OS Application 

  Full Library Package Generator  

  Generating Project Files for your Target 

Inserting Application Code to Run only on Target OS Environment 

Running AppCOE Generated Code on your Target 

 

 

 

 

  



Application Common Operating Environment User Manual 
 

  147 

About Cross-OS Development Platform 

There are three interfaces in the OS Abstractor Interface options providing the ability to 

develop & use portable application.  

1. OS Abstractor development interfaces from Mapusoft – OS Abstractor Target 

Specific Module (specific to each target OS) provides the connection to your target 

operating system(s). 

2. Linux/POSIX Interface– Providing the POSIX/LINUX re-host capability 

3. micro-ITRON Interface. – Provides ITRON re-host capability  

Developers also have the ability to choose multiple Interfaces for use within the 
sameapplication and existing applications can connect to the appropriate Interface for 

re-hosting on a different OS.  

Figure 6_1: Cross-OS Development Platform 

 

  



Application Common Operating Environment User Manual 
 

  148 

About OS Abstractor 

 

OS Abstractor is designed for use as a C library. Services used inside your application 

software are extracted from the OS Abstractor libraries and are then combined with the 

other application objects to produce the complete image. This image may be downloaded to 

the target system or placed in ROM on the target system. OS Abstractor will also function 

under various host environments. 

 

Developing a solid software architecture that can run on multiple operating systems 

requires considerable planning, development and testing as well as upfront costs associated 

with the purchase of various OS and tools to validate your software. MapuSoft’s OS 

Abstractor is an effective and economical software abstraction alternative for your 
embedded programming. By using OS Abstractor, your embedded application can run on 

many real time (RTOS) and non-real time operating systems to negate any porting issues in 

the future when your platform changes. 

 

Figure 6_2: OS Abstractor Flow Diagram 
Interfaces Available for OS Abstractor 

The following are the OS Abstractor products: 

• POSIX/LINUX 

• micro-ITRON 

• VxWorks 

• pSOS 

• Nucleus 

• Windows 



Application Common Operating Environment User Manual 
 

  149 

• ThreadX 

•  µC/OS 

• FreeRTOS 

• VRTX 

• QNX 

• RTLinux 

Application developers need to specify the target operating system that the application and 

the libraries are to be built for inside the project build scripts. Application developers can 
also customize OS Abstractor to include only the components that are needed and exclude 

the ones that are not required for their application.  

If the Application also uses Interface products, additional configuration may be necessary. 

Please refer to the individual Interface documents. 

Developing OS Abstractor or Cross-OS Application 
 
The steps for using OS Abstractor are described in the following generic form: 

1. Include os_target.h in all your application source files. 

2. Set the appropriate compiler switches within the project build files to indicate the 

target OS and other target configurations. 

3. Configure the pre-processor defines found in the cross_os_usr.h header file 

under each target OS folder to applications requirements. 

4. Initialize the OS Abstractor library by calling OS_Application_Init() function. If 

you are also using POSIX/LINUX Interface, then also use OS_Posix_Init() 

function call to initialize the POSIX/LINUX component as well. If you use OS 

Changer(s), you may need to call other appropriate initialization functions as well. 

After initialization, create your initial application resources and start the 

application’s first task. After this and within the main thread, call 
OS_Application_Wait_For_End() function to suspend the main thread and wait 

for application re-start or termination requests. 

5. Compile and link your application using appropriate development tools. 

6. Download the complete application image to the target system and let it run. 

 

NOTE: Make sure to disable User Account Control (UAC) in order to have administration 

permission in Windows Vista and Windows7. 

 

Turning Off UAC 

In order to run our products successfully, users need to turn off the User Access Control 

(UAC).  

To turn off UAC: 

• On Windows Vista:  

1. Go to Start> Control Panel > Security Center > Other Security Settings. 

2. Turn off User Access Control. 

• On Windows 7/8: 

1. Go to Start>Control Panel\User Accounts and Family Safety\User Accounts. 

2. Set the notification to Never Notify. 

 

Refer to the sample demo applications provided with OS Abstractor as a reference point to 

start your application. Please review the target processor and appropriate development tools 

documentation for additional information, including specific details on how to use the 

compiler, assembler, and linker. 



Application Common Operating Environment User Manual 
 

  150 

 

 

Full Library Package Generator 

MapuSoft enables you to generate a full library code package to create libraries and develop 

applications using your own IDE. You can manually scale and configurethe product by 

modifying the user configuration file.  
 

Note: Before you begin, refer to MapuSoft System Configuration Guide. 

 

This section contains the following topics 

 

Generating Full Library Packages 

Generating Binary Packages 
 

Generating Full Library Packages 

NOTE: This feature requires a Library Package generation license. Click 

http://mapusoft.com/contact/ to send a request to receive licenses and documentation.  

AppCOE can also create full library packages to complete the porting and development 

outside of AppCOE with your own tools and environment. 

NOTE: To generate full library package on Windows Interface, ensure that the flag 

INCLUDE_OS_PROCESSis set to OS_TRUE in the cross_os_usr.h configuration file. 

 

To generate full source library package, follow the steps: 

To generate full library package:  

• From AppCOE main menu, click Full Library Package Generator button on the tool 

bar as highlighted inFigure 6_3Or select Tools > Full Library Package Generator. 

Figure 6_3: Generating Library Package 

http://mapusoft.com/contact/


Application Common Operating Environment User Manual 
 

  151 

 
 

• On Full Library Package Generator window, select the required Target OS from the list 

and click Nextas shown in Figure 6_4. 

Figure 6_4: Select Target OS 



Application Common Operating Environment User Manual 
 

  152 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Application Common Operating Environment User Manual 
 

  153 

• Select the development OS APIs needed to generate full library package and click Nextas 

shown inFigure 6_5. 

Figure 6_5: Select OS Changer or OS Abstractor Products 

 
 

 
 

 

 

 

 
 

 

 

 

 

 
 

 

 

 

 



Application Common Operating Environment User Manual 
 

  154 

 

• Select the destination path to save the generated package and click Finish as shown in 

Figure 6_6. 

Figure 6_6: Select Destination Path 

 
 

 

 

 

 
 

 

 

 

 
 

 

 

 

 

 
 

 

 

 



Application Common Operating Environment User Manual 
 

  155 

 

• The successful library package generation is shown inFigure 6_7 . 
 

Figure 6_7: Full Library Package Generation Verification Report 

 
 

Note: Incase of linux 64 bit machines the user might be required to change the path of the 

library from usr/lib to usr/lib64 for smooth execution of the projects. Otherwise the following 

compilation error might be faced, 
/usr/bin/ld: skipping incompatible /usr/lib/libpthread.so when searching 

for -lpthread 

/usr/bin/ld: skipping incompatible /usr/lib/librt.so when searching for -

lrt 

/usr/bin/ld: skipping incompatible /usr/lib/libc.so when searching for –lc 

 

 

 

 

 



Application Common Operating Environment User Manual 
 

  156 

 
 

Show the Full Library Package Created by AppCOE  

The full library package includes libraries with full source code to manually link into the 

applications. Once the application is recompiled with MapuSoft’s products it will run on the 

new OS. 

To view the generated full library package: 

a) Open the folder created by AppCOE.  

b) Click on the folder to view the files included in the package as shown inFigure 

6_8, which include: 

▪ A sample application 

▪ Libraries containing the MapuSoft products needed to run their application 
on the new OS 

Figure 6_8: Full Library Package Generation Folder 

 
 

 

3. Make sure if your application is built for 32bit architecture, OS_CPU_64BIT is set as 

OS_FALSE as a command line option. 
 

Note:  Incase of linux 64 bit machines the user might be required to change the path of the 

library from usr/lib to usr/lib64 for smooth execution of the projects. Otherwise the 

following compilation error might be faced, 
/usr/bin/ld: skipping incompatible /usr/lib/libpthread.so when 

searching for -lpthread 

/usr/bin/ld: skipping incompatible /usr/lib/librt.so when searching 

for -lrt 

/usr/bin/ld: skipping incompatible /usr/lib/libc.so when searching 

for –lc 

 

 

 

 
 

 

 

 

 
 

 

 

 

 

 
 

 

 

 



Application Common Operating Environment User Manual 
 

  157 

 

Steps to compile the extracted source code using Makefile project 

If your target is of linux based operating systems, Makefile can also be used in compilation. 

Copy the extracted source code to the linux machine and follow the below steps. 

 

Makefile command line options 
 

Table 6_1: User specific command line options of make file 

Command line options Descrption 
ROOT_DIR=<path> Sets the user selected path as the root 

directory 
LIB_OUT_DIR=<path> Sets the user selected path as the directory 

holding the library extension 

file(eg:libcross_os.a) 
make all Compiles the extracted source code 
make clean Cleans/Removes the built libraries 

completely 
make ARCH=32 Compiles the 32 bit os_abstractor 

application in a X86_64 bit machine 

 

• From the extracted directory, Makefile is navigated. It will be found in 

/../../cross_os_linux/specific/linux/x86/gnu/ 

Figure 6_9: Navigating the extracted folder 

 

 

• In order to set a different root directory of your make file, the following command is 

used. 

  make ROOT_DIR=<path> 

Figure 6_10: Setting the user selected root directory 

 

 

• In default the library extension file(eg: libcross_os.a)can be found in the <extracted 

source code directory>/lib/... The user can also select their own target directory using 

the command line option 

 make LIB_OUT_DIR=/…(path) 

For eg: make LIB_OUT_DIR=/root/target/ 

 Figure 6_11: User selected library directory 

 

 



Application Common Operating Environment User Manual 
 

  158 

 

• If you have a X86_64 bit machine and you are in need of compiling a 32 bit 

os_abstractor application, then the following command is used. 

 make ARCH=32 

The flag –m32could be found in the compilation window in this case. 

Figure 6_12: Compiling a 32 bit application in X86_64 machine 

 

 (Note: In default Makefile will have ARCH=64) 

 

• In order to compile the extracted os_abstractor source code, the command make allis 

given in the terminal.  

 Figure 6_13: Compiling the extracted source code 

 

 

• If you have made changes in your source after giving make all command, you can 

either give make/make all command to update your libraries with changed code or you 

can clean/remove all your libraries using the command make clean and then it can be 

compiled again from the first using the  command make all. 

 Figure 6_14: Cleaning the libraries 

 

 

 

  



Application Common Operating Environment User Manual 
 

  159 

Steps to cross-compile the source code using Makefile for target hardware. 

If you need to cross-compile for target hardware Makefile can also be used in cross-

compilation using make command along with arguments. Copy the extracted source code to 

the existing host machine and follow the below steps. 

 

Makefile command line options for target hardware 
 

Table 6_2: User specific command line options of make file for target 

hardware. 

 

Command line options Description 
ROOT_DIR=<path> Sets the user selected path as the root 

directory 
LIB_OUT_DIR=<path> Sets the user selected path as the directory 

holding the library extension 

file(eg:libcross_os.a) 
make all Compiles the extracted source code 
make clean Cleans/Removes the built libraries 

completely 
make ARCH=32 Compiles the 32 bit os_abstractor 

application in a X86_64 bit machine 
CROSS=<cross compiler tool prefix> Specifies the cross compiler executable 

prefix. 
TOOL_DIR=<installation location of 

cross compiler tool> 

Sets the path of the cross compiler package 

installed on your Linux host machine. 

 

• Make change in cross_os_usr.h for the target you need to compile. Default will be 

OS_LINUX_X86.  

#define OS_LINUX_TARGET                       OS_LINUX_X86 

You can change to OS_LINUX_ARM, OS_LINUX_ARM_RASPBERRY_PI and 

OS_LINUX_OTHERS as defined in cross_os_def.h.  

For example : Target is ARM 

Figure 6_15: Editing the cross_os_usr.h file.    

 
 

• Configure the cross-compiler on your host machine after successful installation of 

the cross -compiler. 

For example: Configuring the arm-xilinx-linux-gnueabi- on Debian 9 host machine. 

Xilinx_SDK_2017.2_0616_1_Lin64.bin package installed on your Linux host 

machine. Edit the bash.bashrc using vi editor or using other utility application as 

export PATH=<Xilinx SDK_location>/SDK/2017.2/gnu/arm/lin/bin 

 



Application Common Operating Environment User Manual 
 

  160 

Figure 6_16: Configuring the cross-compiler path in.bashrc file. 

 

• Build your cross_os and other interfaces source code packages using the make 

command passing the argument as name of the cross-compiler. The command 

stated as follows: 

make CROSS=<cross compiler tool prefix> 

 

For example : After configuring the arm-xilinx-linux-gnueabi-, make command to 

build cross_os and interfaces as : 

make CROSS=arm-xilinx-linux-gnueabi- 

Figure 6_17: Cross-compiling the cross os and interfaces using cross-compiler 

 

 

 

• Then build your application using the make command passing the argument as 

name of the cross-compiler and the path of the binary of the cross-compiler package 

installed in your linux . The command stated as follows: 

make CROSS=<cross compiler tool prefix> TOOL_DIR=<binary path of the 

cross compiler tool> 

 

For example: make command to build the canned demo application. 

make CROSS = arm-xilinx-linux-gnueabi-  

TOOL_DIR=/Xilinx2017/SDK/2017.2/gnu/lin 

Figure 6_18: Cross-compiling the demo/other applications using cross-

compiler. 

 

 

 

• The executable of application can run on target hardware. 

 

Generating Binary Packages 

NOTE: If you want to build a library as a Shared Library, use the makefile named 

makefile_s under cross_os_xxxx/specific/x86/gnu/makefile. 
  



Application Common Operating Environment User Manual 
 

  161 

 

Optimized Target Code Generator 

AppCOE’s Optimized Target Code Generator generates porting and OS Abstractor Interface 

source code optimized for your application. This allows you to create project files. This also 

includes the system settings you chose in the GUI-based Wizard.  

Note: Before you begin, refer to MapuSoft System Configuration Guide. 

 

This section contains the following topics: 

 
Generating Optimized Target Code 

 
Generating Project Files for your Target 

 
Inserting Application Code to Run only on Target OS Environment 

 
Running AppCOE Generated Code on your Target 

 

 

  



Application Common Operating Environment User Manual 
 

  162 

Generating Optimized Target Code 

This section describes how to generate optimized target code using AppCOE. Most of the 

configurations described below can also be changed at run time using the 

OS_Application_Init function. 

 

NOTE 1: This feature requires a target license. Click http://mapusoft.com/contact/ to 

send a request to receive licenses and documentation. 

NOTE 2: For all Optimized Target Code Generation the preprocessor OS_HOST flag is set to 

OS_FALSE. If the user intends to do the host development on the optimized target code, 

they need to change this preprocessor flag to OS_TRUE manually. 

NOTE 3: On Linux target, PC hangs while running demo_uitron from terminal if you 
terminate the execution by Ctrl+C. Make sure that #define OS_BUILD_FOR_SMP is set to 

False when compiling for non SMP processors. 

NOTE 4: If you select a library project, which either has, a C/C++ generic library project or 

AppCOE library project, Target Code Generator icon is disabled. 

NOTE 5: API optimization is not supported for AppCOE libraries linked with application 

project during target code generation. 

NOTE 6:The Eclipse Indexer may report errors after successfully building an application. 

These errors are related to missing symbols and are due to the fact that the indexer is not 

detecting the changes in the source files which are generated., and select Index > Rebuild 

from the context menu. 

To resolve the errors: 

1. Right-click the Project, then Select Project > Properties > C/C++ General > 

Indexer.  

2. Click Enable Project Specific Settings check box, and click Enable Indexer check 

box. 

3. Click Apply and OK. 

Optimized Target Code Generation for Ada Projects 

AppCOE allows Optimized Target Code Generation for Ada-C/C++ Changer Projects, when 

the projects are created with OS Abstractor Integration.  

 

NOTE 1: The project file generated to QNX Momentics 4.x IDE using optimized target does 

not enable the build variant, so you need to manually enable the build variant after 

importing in the QNX IDE. 

To enable the Build Variant: 

• Select the project and go to Project Properties->C/C++ General->QNX 

C/C++Project. 

• Select Build variant tab. 

• To enable the build variant, select the X86 check box. 

NOTE 2: Check if the Indexer is enabled. Generating Optimized Target Code will not work if 

Indexer is OFF. 

NOTE 3:For all Optimized Target Code Generation the preprocessor OS_HOST flag is set to 
OS_FALSE. If the user intends to do the host development on the optimized target code, 

they need to change this preprocessor flag to OS_TRUE manually. 

NOTE 4: The QNX Momentics IDE has an issue where relative path names are not updated 

unless there is a modification to the project settings. This will cause the initial build of the 

Full Source version of OS Abstractor to fail since the project files were created in a different 

location than where they were installed.   

 

 

 

http://mapusoft.com/contact/


Application Common Operating Environment User Manual 
 

  163 

To force Momentics to update these paths: 

• Right-click on the project and select Properties from the context menu.  Then 

click Apply and close the properties window. 

NOTE 5: To generate optimized target code on Windows Interface, ensure that the flag 

INCLUDE_OS_PROCESS is set to OS_TRUE in the cross_os_usr.h configuration file. 

 

To generate Optimized Target Code: 

1. From AppCOE C/C++ projects, select a project.  

2. From AppCOE main menu, click Tools >Optimize Target Code Generator or click 

the Optimized Target Code Generator button on the AppCOE Toolbar as shown 

inFigure 6_19. 

Figure 6_19:AppCOE Target Code Generator 

 



Application Common Operating Environment User Manual 
 

  164 

3. From AppCOE Optimized Target Code Generator window, select your target platform 

specifications from the drop down list. VxWorks operating system is selected as an 

example as shown in6_20. 

Figure  6_20: Selected VxWorks Target in this Example 

 



Application Common Operating Environment User Manual 
 

  165 

The field descriptions on AppCOE Optimized Target Code Generator window are as follows: 

Table 6_3: Field descriptions on AppCOE Optimized Target Code 
Generator 

Field  Description Your Action 

Target Specifies the target OS name. Enter the target OS 
name in the text box.  

Version Based on the Target OS name you selected, 

this specifies, the available version names 

listed in the Version drop down list. 

Select the appropriate 

target version.  

SMP This specifies the Symmetric Multi processor. Select this if your 

target supports SMP 

or UP. 

Kernel 
Mode 

If applicable to the Target OS name and 
version, this specifies the following modes: 

• User mode 

• Kernel mode 

Select the Target 
kernel mode by 

selecting it from the 

drop down list. 

Architectu

re 

This specifies the architecture of the Target 

OS. The options are: 

• 32-bit 

• 64-bit 

Select the architecture 

you need.  

Target 

Hardware 

Specifies the type of target hardware used to 

complete code optimization. 

Note: You can select the target hardware 

only when you select VxWorks as your target 

OS. 

Select the type of 

target hardware used. 

The options are: 

PPC,PPC_604,X86,AR

M,M68K,MCORE,MIP
S,SH,SIMLINUX,SIMN

T,SIMSOLARIS,SPARC 

Load 

Settings 

This specifies the following two options to 

load settings from: 

• Previous: If you select Previous, then 

initial values for this wizard are loaded 

from previously saved settings and 

populated. 

• Default: If you select Default, then the 
values from default settings are 

populated. 

Select the option to 

load settings from by 

selecting from the 

drop down list. 

Generate 

a Project 

File 

Specifies if you want to generate a project 

file.  

Select the check box 

next to Generate 

project file. 

Project Specifies the different target project types 

that you can generate for this project. The 
generated project files are directly imported 

into the specified IDE (Eclipse/Visual 

Studio), and this project becomes a project of 

that IDE. 

Select the project from 

the drop down list. 

Destinatio

n Path 

Specifies the path to place the generated 

optimized target code.  

Click Browse and 

select the folder to 
place the generated 

code. 

4. From AppCOE Optimized Target Code Generator window, when you select your 

target platform as Linux/RT Linux Resource Protection Under SMP selection is 

provided as shown in Figure  6_17. 



Application Common Operating Environment User Manual 
 

  166 

Resource Protection Under SMP has option of either Spin Lock or Mutex Lock . 
Spin lock is useful if protection is required for a short time. Spin Lock wastes CPU if 

protection required is for longer periods. If you have two or more cores and when 

you see serious performance issues then it is recommended to use Mutex Lock. 

When you enable Mutex Lock as shown inFigure 6_21,this willset 

OS_PROTECTION_USE_MUTEX_LOCK flag to OS_TRUE in cross_os_usr.h file. The 

followingFigure 6.17 will show the Spin Lock or Mutex Lock in selection.  

Figure  6_21: Resource Protection under SMP selection in Linux/RT Linux 

 

 

If you select an application project,   AppCOE checks if the application project has any 

linked-in libraries and queries the workspace for any matching library projects. If AppCOE 

finds any libraries, then it will install the available libraries on the page as shown in 6_22. 



Application Common Operating Environment User Manual 
 

  167 

All the libraries are selected by default, and you can select or deselect any/all libraries 
to export library sources along with the application during code generation process. 

Select the libraries and click Next. 

Figure 6_22: Select the linked-in Libraries 

 
 

NOTE: When you export AppCOE libraries, it will skip API Optimization. 

 

Target Code Generator will contain the following folders/files: 

• Application project sources and project/make files. 

• OS Abstractor Interfaces (the ones that are included in the project) 

• Library sources without project files. 

  



Application Common Operating Environment User Manual 
 

  168 

5. On Profiler Configuration tab, define your profiler data specifications as shown in 

Figure 6_2323.  

Figure 6_23: Profiler Configuration 

 



Application Common Operating Environment User Manual 
 

  169 

The field descriptions on Profiler Configuration tab are as follows: 

Table 6_4: Field descriptions on Profiler Configuration tab 

Field  Description Your Action 

Description Specifies the description for 

the  OS Abstractor 

Interface project. 

Type description 

for the  OS 

Abstractor 

Interface project. 

Profiler Task Priority Specifies the priority level 
of the profiler thread. 

Enter a priority 
level for the 

profiler thread. 

The value can be 

between 0 

through 225. The 

default value is 
set to 200. 

File Path to Store 

Profiled Data 

Specifies the directory 

location where the profiler 

file will be created. 

Enter a data file 

path.  

The default 

location set is 

/root on Unix 
based machines 

and c/ on MS 

Windows 

machine. 

Number of Data in 

Memory Before Each 

Write 

Specifies the depth of the 

profiler queue. 

Enter the number 

of data in memory 

before each write. 
The default value 

is set to 3000. 

Maximum Profiler 

Data to Collect 

Specifies the maximum 

records collected in the 

XML file. 

Enter the number 

of profiler 

messages. The 

default value is 

set to 30000. 



Application Common Operating Environment User Manual 
 

  170 

6. On Platform API Profiling tab, select the check box to enable your appropriate 

Interface API Profiling as shown inFigure  6_24. 

Figure  6_24: Platform API Profiling 

 



Application Common Operating Environment User Manual 
 

  171 

The field descriptions on Platform API Profiling tab are as follows: 

Table 6_5: Field descriptions on Platform API Profiling tab 

Field  Description Your Action 

Enable  OS 

Abstractor 

Interface API 

Profiling 

Specifies if the  OS 

Abstractor Interface API 

Profiling feature is enabled 

or disabled. 

Select the check 

box to enable 

platform profiling.  

Platform Profiling 
means OS 

Abstractor Interface 

APIs profiling.  

NOTE: By default,  

OS Abstractor 

Interface API 
profiling is enabled 

for all projects. 

Enable 

POSIX/LINUX 

Interface API 

Profiling 

Specifies if OS Abstractor 

POSIX/LINUX Interface API 

Profiling feature is enabled 

for your project. 

Select the check 

box, if you need 

profiling for your 

POSIX/LINUX APIs. 

Enable micro-
ITRON Interface 

API Profiling 

Specifies if  OS Abstractor  
micro-ITRON Interface API 

Profiling feature is enabled 

for your project. 

Select the check 
box, if you need 

profiling for your 

micro-ITRON APIs. 

Enable Windows 

Interface API 

Profiling 

Specifies if OS Changer 

Windows Interface API 

Profiling feature is enabled 
for your project. 

Select the check 

box, if you need 

profiling for your 
Windows APIs. 

Enable VxWorks 

Interface API 

Profiling 

Specifies if VxWorks 

Interface API Profiling 

feature is enabled for your 

project. 

Select the check 

box, if you need 

profiling for your 

VxWorks Interface 

APIs. 

Enable pSOS 

Interface API 
Profiling 

Specifies if OS Changer 

pSOS Interface API Profiling 
feature is enabled for your 

project. 

Select the check 

box, if you need 
profiling for your 

pSOS Interface 

APIs. 

Enable Nucleus 

Interface API 

Profiling 

Specifies if OS Changer 

Nucleus Interface API 

Profiling feature is enabled 
for your project. 

Select the check 

box, if you need 

profiling for your 
OS Changer 

Nucleus Interface 

APIs. 

Enable µC/OS 

Interface API 

Profiling 

Specifies if OS Changer 

µC/OS Interface API 

Profiling feature is enabled 

for your project. 

Select the check 

box, if you need 

profiling for your 

OS Changer µC/OS 
Interface APIs. 

Enable FreeRTOS 

Interface API 

Profiling 

Specifies if OS Changer 

FreeRTOS Interface API 

Profiling feature is enabled 

for your project. 

Select the check 

box, if you need 

profiling for your 

OS Changer 

FreeRTOS Interface 
APIs. 



Application Common Operating Environment User Manual 
 

  172 

7. On Application Functions Profiling tab, you can also perform profiling for your 

specific APIs as shown in Figure 6_25. 

Figure 6_25: Application Function Profiling 

 



Application Common Operating Environment User Manual 
 

  173 

The field descriptions on Application Functions Profiling tab are as follows: 

 

Table 6_6: Field descriptions on Application Functions Profiling tab 

 

Field  Description Your Action 

Enable Application 

Functions Profiling 
Specifies if the 

Application Functions 
Profiling feature is 

enabled or disabled. 

Select the check box 

to enable Application 
Functions profiling.  

This profiling is used 

for User APIs 

profiling. 

Enter Application 

Function 
Specifies the name of the 

Application Function for 

profiling. 

Enter the name of 

the application 

function. 
NOTE: This field is 

case sensitive. 

Add Specifies if you want to 

add any application 

functions. 

To add any 

application function, 

enter the name in the 

text box, and click 
Add. 

Remove Specifies if you want to 

remove any application 

functions from the list. 

To remove any 

application function 

from the list, select 

the name of the 

application function 
in the text box, and 

click Remove. 

8. Add your APIs by typing in the name of the API next to Enter Application Function 

text box and click Add and click Next.  

  



Application Common Operating Environment User Manual 
 

  174 

9. On API Optimization tab, you can select either to generate Full API Library 

Interface or Optimized API interface. In API Optimization, you can select the API’s 

which needs to be a standard function or a macro function and move the selected 

API using the double arrow button as shown in Figure 6_26. Macro functions will 

execute faster but will increase the memory footprint of the application and click 

Next.  

Figure 6_26: API Optimization 

 
 

Need for Code Optimization: Macro function is used to eliminate the time overhead when 

a function is called. It is typically used for functions that execute frequently. It also has a 

space benefit for very small functions, and is an enabling transformation for other 

optimizations. 

Without macro functions, however, the compiler decides which functions to inline. The 

programmer has little or no control over which functions are macro functions and which 

are not. Giving this degree of control to the programmer allows her/him to use application-

specific knowledge in choosing which functions to macro.  

http://en.wikipedia.org/wiki/Optimization_%28computer_science%29


Application Common Operating Environment User Manual 
 

  175 

The field descriptions on API Optimization tab are as follows: 

Table 6_7: Field descriptions on API Optimization tab 

Field  Description Your Action 

Generate Full 

API Library 
Interface 

Specifies if you want to 

generate full API library 
package. 

Note: You can do this if 

you have a valid license 

for standalone 

generation. 

Select the radio button to 

generate full library package. 

Note: If you select this option, 

the rest of the fields on this 

window are disabled. 

Generate 

Optimized API 
Interface Files 

Specifies if you want to 

generate optimized API 
interface files. 

Note: If the application 

includes AppCOE based 

application libraries, 

generating optimized API 
interface option is 

disabled. 

Select the radio button to 

generate optimized API interface 
files. 

Note: By default this option is 

enabled. 

Standard 

Function 

Specifies if the APIs used 

in your application are 

standard functions.  

Select the functions used in this 

application as standard 

functions for the target OS 

project. 

You can select multiple function 
names at once to place them in 

the other list. 

You can select all function 

names in a list using the select 

All (Ctrl+A) action also. 

Macro 
Function 

Specifies that a compiler 
inserts the complete 

body of the function in 

every place in the code 

where that function is 

used. It is used to 

eliminate the time 
overhead when a 

function is called and 

execute it frequently. 

To select a standard function 
into a macro function, select the 

API and click the right arrow.  

To select a macro function into 

a standard function, select the 

API under macro function, and 

click the left arrow. 

Note: You can use optimization 

for this. If a function is being 

called repeatedly, they can 

improve the performance by 

making this a macro function. 



Application Common Operating Environment User Manual 
 

  176 

10. On Task configuration tab, configure the options to your specifications as shown in 

Figure 6_27. Applications can create  OS Abstractor Interface tasks during 

initialization and will be able to re-use the task envelope repeatedly by selecting the 

check box next to Enable Task Pooling Feature.  

Figure 6_27: Task Tab 

 
 

NOTE: In the current release, Task Pooling feature is not supported in ThreadX and 

Nucleus targets. 



Application Common Operating Environment User Manual 
 

  177 

The field descriptions on Task tab are as follows: 

 

Table 6_8:Field descriptions on Task tab 

Field  Description Your Action 

Maximum 

Task Control 
Blocks 

Specifies the total 

number of tasks 
required by the 

application. 

Enter a value. 

NOTE: The default value is 100. 
One control block will be used by 

the OS_Application_Init function 

when the INCLUDE_OS_PROCESS 

option is true. 

System Time 

Resolution 
(OS_TIME_TI

CK_PER_SEC

) 

Specifies the system 

clock ticks  
(not hardware clock 

tick). 

For example, when 

you call 

OS_Task_Sleep(5), 

you are suspending 
task for a period 

(5* 

OS_TIME_RESOLUTI

ON). 

Enter a value. 

NOTE: The default value is 10000 
micro second (= 10milli sec). 

This value is derived from the 

target OS. If you cannot derive the 

value, refer to the target OS 

reference manual and set the 

correct per clock tick value. 
NOTE: Since the system clock tick 

resolution may vary across 

different OS under different target, 

it is recommended that the 

application use the macro 
OS_TIME_TICK_PER_SEC to 

derive the timing requirement 

instead of using the raw system 

tick value in order to keep the 

application portable across 

multiple OS. 

Default Time 
slice for 

Standard 

Tasks 

(OS_DEFAUL

T_TSLICE) 

Specifies the default 
time slice scheduling 

window width among 

the same priority 

pre-emptiable 

threads when they 
are all in ready state. 

Enter a default time slice for 
standard tasks.  

NOTE: The default value is 10 ms. 

If system tick is 10ms, then the 

threads will be scheduled round-

robin at the rate of every 100ms. 
NOTE: On Linux operating 

system, the time slice cannot be 

modified per thread.  OS 

Abstractor Interface ignores this 

setting and only uses the system 

default time slice configured for 
the Linux kernel. 

Enable Task 

Pooling 

Feature 

Specifies if the Task 

pooling feature is 

enabled for this 

application.  

Task pooling feature 
enhances the 

performances and 

reliability of 

application. If you 

enable the task 

pooling feature, 
applications can 

create  OS Abstractor 

Interface tasks 

To enable task pooling feature, 

select the check box. 



Application Common Operating Environment User Manual 
 

  178 

Field  Description Your Action 

during initialization 

and be able to re-use 
the task envelope 

repeatedly. To 

configure task-

pooling, set the 

following pre-
processor flag as 

follows:  

INCLUDE_OS_TASK_

POOLING. 

Default Task 

pool Time 

slice 

Specifies the default 

Task pool Time slice. 

Enter the default Task pool Time 

slice. 

NOTE: The default value is 
OS_DEFAULT_TSLICE. 

Default Task 

pool Timeout 

Value 

Specifies the default 

Task pool timeout 

value. 

Enter the default Task pool 

timeout value. 

NOTE: The default value is 

OS_TIME_TICK_PER_SEC() * 6. 

11. On Process configuration tab, configure the options to your specifications as shown 

inFigure 6_28. Select the check box next to Enable  OS Abstractor Interface 

Process Feature to allocate the memory from a shared memory region to allow 

applications to communicate across multiple processes. By disabling this option, the 

memory will be allocated from the individual application/process specific pool, 

which is created during the OS_Application_Init function call.  

Figure 6_28: Process Tab 
 

 



Application Common Operating Environment User Manual 
 

  179 

The field descriptions on Process tab are as follows: 

Table 6_9: Field descriptions on Process tab 

Field  Description Your Action 

Enable  OS Abstractor 

Interface Process 

Feature 

Specifies if the  OS 

Abstractor Interface process 

feature 

is enabled or disabled.  

Select the check box 

to enable this 

feature. 

Maximum Process 
Control Blocks 

Specifies the total number of 
processes required by the 

application 

Enter the maximum 
number of process 

control blocks for the 

application. 

NOTE: Default value 

is 100. 

Process Memory Pool 
Minimum Size in Bytes 

Specifies the minimum size 
of the process memory pool 

in Bytes. 

Enter the minimum 
size of the process 

memory pool. 

NOTE: Default value 

is 1024 Bytes. 

Process Memory Pool 

Maximum Size in Bytes 

Specifies the maximum size 

of the process memory pool 

in Bytes. 

Enter the maximum 

size of the process 

memory pool. 
NOTE: Default value 

is 0xffffffff Bytes. 

Stack Size for the Main 

Process in kilobytes 

Specifies the stack size for 

the main process in 

Kilobytes. 

Enter the stack size 

for the main process. 

NOTE: Default value 

is 1024 * 200 
Kilobytes. 

Heap Size for the Main 

Process in kilobytes 

Specifies the heap size for 

the main process in 

Kilobytes. 

Enter the heap size 

for the main process. 

NOTE: Default value 

is 1024 * 400 

Kilobytes. 

Task priority for the 

Main Process 

Specifies the task priority for 

the main process. 

Enter the task 

priority for the mail 
process. 

NOTE: Default value 

is 0. 

Task Preemption Mode 

for the Main Process 

Specifies the preemption 

status of this task. 

Enter the task 

preemption status of 

the task.  
NOTE: The valid 

parameters are: 

▪ OS_PREEMPT – 

Task can be pre-

empted by the 

system. 
▪ OS_NO_PREEMPT – 

Task cannot be 

pre-empted. 



Application Common Operating Environment User Manual 
 

  180 

12. On Memory configuration tab, configurethe options to your specifications as shown 

in Figure 6_29. 

Figure 6_29: Memory Tab 

 



Application Common Operating Environment User Manual 
 

  181 

The field descriptions on Memory tab are as follows: 

Table 6_10: Field descriptions on Memory tab 

Field  Description Your Action 

Maximum Variable 

Memory Pool Control 

Blocks 

Specifies the total number of 

dynamic variable memory 

pools required by the 

application. 

Enter the 

maximum 

number of 

dynamic variable 
pools. 

NOTE: Default 

value is 100. 

Maximum Fixed 

Memory Pool Control 

Blocks 

Specifies the total number of 

partitioned (fixed-size) 

memory pools required by 

the application. 

Enter the 

maximum 

number of 

partitioned 
memory pools. 

NOTE: Default 

value is 100. 

Minimum Variable 

Pool Allocation Size 

in Bytes 

Specifies the minimum 

memory allocated by the 
malloc() and/or 

OS_Allocate_Memory() calls.  
NOTE: Increasing this value 

further reduces memory 

fragmentation at the cost of 

more wasted memory. 

Enter the 

minimum 

memory 
allocated. 

NOTE: Default 

value is 4. 

Increasing this 

value further 
reduces memory 

fragmentation at 

the cost of more 

wasted memory. 

User Shared Memory 

Region Size 

Specifies the application 

defined shared memory 

region usable across all  OS 
Abstractor Interface 

processes/applications. 

Enter the user 

shared memory 

region size. 
NOTE: Default 

value is 1024 

Bytes. 

Maximum Tiered 

Memory Pool Control 

Blocks 

Specifies the total number of 

Tiered Memory Pools 

required by the application. 

Enter the 

maximum 

number of Tiered 
Memory variable 

pools. 

NOTE: Default 

value is 100. 

Maximum Tiered 

Shared Memory Pool 

Control Blocks 

Specifies the total number of 

Tiered Shared Memory Pools 

required by the application. 

Enter the 

maximum 

number of Tiered 
Shared Memory 

variable pools. 

NOTE: Default 

value is 100. 

  



Application Common Operating Environment User Manual 
 

  182 

13. On Other Resources configuration tab, configure the options to your specifications 

as shown in Figure 6_30. 

Figure 6_30: Other Resources Tab 

 



Application Common Operating Environment User Manual 
 

  183 

The field descriptions on Other Resources tab are as follows: 

Table 6_11: Field descriptions on Other Resources tab 

Field  Description Your Action 

Maximum 

Pipe Control 

Blocks 

Specifies the total 

number of pipes for 

message passing 

required by the 
application. 

Enter the maximum number of 

pipe control blocks. 

NOTE: Default value is 100. 

Maximum 

Queue 

Control 

Blocks 

Specifies the total 

number of queues for 

message passing 

required by the 

application. 

Enter the maximum number of 

queue control blocks. 

NOTE: Default value is 100. 

Maximum 
Mutex Control 

Blocks 

Specifies the total 
number of mutex 

semaphores required by 

the application. 

Enter the maximum number of 
mutex control blocks. 

NOTE: Default value is 100. 

Maximum 

Semaphore 

Control 

Blocks 

Specifies the total 

number of regular 

(binary/count) 

semaphores required by 
the application. 

Enter the maximum number of 

semaphore control blocks. 

NOTE: Default value is 100. 

Maximum 

Event Group 

Control 

Blocks 

Specifies the total 

number of event groups 

required by the 

application 

Enter the maximum number of 

event group control blocks. 

NOTE: Default value is 100. 

Maximum 

Timer Control 
Blocks 

Specifies the total 

number of application 
timers required by the 

application 

Enter the maximum number of 

timer control blocks. 
NOTE: Default value is 100. 

Maximum 

Protection 

Control 

Blocks 

Specifies the total 

number of Protection 

Control blocks  required 

by the application 

Enter the maximum number of 

Protection control blocks. 

Note: Default value is 100. 

Maximum 

Protection 
System 

Handles 

Specifies the total 

number of System 
handles  required by the 

application 

Enter the maximum number of 

System Handles. 
Note: Default value is 100. 



Application Common Operating Environment User Manual 
 

  184 

14. On Debug tab, configure the options to your specifications as shown in Figure 6_31. 

The application will be checked for API usage errors by selecting the check box next 

to Enable Error Checking. Disabling error checking will increase the application 

performance and reduce your code size.  

Figure 6_31: Debug Tab 

 



Application Common Operating Environment User Manual 
 

  185 

The field descriptions on Debug tab are as follows: 

Table 6_12: Field descriptions on Debug tab 

Field  Description Your Action 

Enable Debug 

Output 

Specifies if you want to 

enable the debug 

output. 

Select the debug output from 

the dropdown menu: 

▪ OS_DEBUG_VERBOSE – 

print debug info, fatal and 
compliance errors 

▪ OS_DEBUG_MINIMUM – 

print minimum amount of 

debug info 

OS_DEBUG_VERBOSE 

Note: The default value is 
OS_DEBUG_VERBOSE 

Enable Error 

Checking 

Specifies if you want to 

enable the error 

checking. 

To enable error checking, select 

the check box. Use this option 

to increase performance and 

reduce code size. 

Note: By default this feature is 
enabled. 

Ignore Fatal 

Errors 

Specifies if you want to 

enable the feature to 

ignore fatal errors. 

To enable the feature to ignore 

fatal errors, select the check 

box.  

Note: By default this feature is 

disabled. 



Application Common Operating Environment User Manual 
 

  186 

15. On Output Devices configuration tab, select your output device from the drop 

drown list as shown in 6_32.  

Figure 6_32: Output Devices Tab 

 



Application Common Operating Environment User Manual 
 

  187 

The field descriptions on Output Devices tab are as follows: . 

Table 6_13: Field descriptions on Output Devices tab 

Field  Description Your Action 

Console Output 
Device 

Specifies the console 
output device for the 
application. 

Select the output device from the 
dropdown menu: 
▪ OS_WIN_CONSOLE – print to 

console 
▪ OS_SERIAL_PORT – print to serial 
NOTE: The default value is 
OS_WIN_CONSOLE 
User can print to other devices by 
modifying the appropriate functions 
within usr.h and use  OS Abstractor 
Interface’s format I/O calls. 



Application Common Operating Environment User Manual 
 

  188 

16. On ANSI Mapping configuration tab, as shown in 6_33. Make surethe ANSI 

mapping is unchecked, because we no longersupport thisin1.8 AppCOE.  

Figure 6_33: ANSI Mapping Tab 

 



Application Common Operating Environment User Manual 
 

  189 

The field descriptions on ANSI Mapping tab are as follows: 

Table 6_14: Field descriptions on ANSI Mapping tab 

Field  Description Your Action 

Map ANSI 

Memory API 

Specifies you want to 

map ANSI malloc() and 

free() to  OS Abstractor 
Interface equivalent 

functions. 

To map ANSI to OS Abstractor 

Interface equivalent functions, 

select the check box. 
By default this feature is 

disabled. 

Note: We no longer support this 

feature in 1.8 AppCOE 

Map ANSI I/O 

API 

Specifies if you want to 

map ANSI device I/O 

functions like open(), 

close(), read(), write, 
ioctl(), etc. to  OS 

Abstractor Interface 

equivalent functions. 

To map ANSI I/O functions to  

OS Abstractor Interface 

equivalent functions, select the 

check box. 
 By default this feature is 

disabled. 

Note: We no longer support this 

feature in 1.8 AppCOE 

MAP ANSI I/O 

Formatting API 

Specifies if you want to 

map ANSI printf() and 

sprintf() to  OS 

Abstractor Interface 

equivalent functions. 

To map ANSI I/O formatting 

functions to  OS Abstractor 

Interface equivalent functions, 

select the check box. 

 By default this feature is 
disabled. 

Note: We no longer support this 

feature in 1.8 AppCOE 



Application Common Operating Environment User Manual 
 

  190 

17. On Device I/O configuration tab, configure the options to your specifications as 

shown in Figure 6_34.  

Figure 6_34: Device Input or Output Tab 

 



Application Common Operating Environment User Manual 
 

  191 

The field descriptions on Device I/O tab are as follows: 

Table 6_15: Field descriptions on Device I/O tab 

Field  Description Your Action 

Maximum 

Number of 

Device 
Drivers 

Specifies the maximum number of 

drivers allowed in the  OS 

Abstractor Interface driver table 
structure. 

Note: This excludes the native 

drivers the system, since they do 

not use the  OS Abstractor 

Interface driver table structure. 

Enter the maximum 

number of device 

drivers. 
Note: Default value 

is 20. 

Maximum 
Number of 

Files 

Specifies the maximum number of 
files that can be opened 

simultaneously using the  OS 

Abstractor Interface file control 

block structure. 

Note: One control block is used 

when the  OS Abstractor Interface 
driver is opened. These settings do 

not impact the OS setting for max 

number of files. 

Enter the maximum 
number of files that 

can be opened 

simultaneously. 

Note: Default value 

is 30. 

Maximum File 

Name Length 

Specifies the maximum length of 

the file name. 

Enter the maximum 

number of files that 

can be opened 
simultaneously. 

Note: Default value 

is Maximum File 

Path Length +1. 

Maximum File 

Path Length 

Specifies the maximum length of 

the directory path name including 

the file name for  OS Abstractor 
Interface use excluding the null 

char termination. 

Enter the maximum 

length of the file 

path. 
Note: Default value 

is 255. 

This setting does not 

impact the OS setting 

for the max path/file 
name. 

Internally 

Used System 

Name Path 

Specifies the temporary directory 

of the file path. 

Enter the temporary 

directory of the file 

path. 

Note: Default value 

is /tmp. 

Internal Name 

Padding 

Specifies the padding for the 

internal name. 

Enter the padding for 

the internal name. 
Note: Default value 

is 20. 



Application Common Operating Environment User Manual 
 

  192 

18. If your project uses pSOSInterface or µC/OS Interface, in Interface configuration 

tab, assign the number of unsigned arrays used to store the task’s data as shown in 

Figure 6_35.The number of Thread Local Storage in µC/OS can also be defined here. 

Figure 6_35: Interface Tab 

 
  



Application Common Operating Environment User Manual 
 

  193 

 

The field descriptions on Interface tab are as follows: 

Table 6_16: Field descriptions on Interface tab 

Field  Description Your Action 

Number of pSOS 

Interface Task 
Registers 

Specifies the number of pSOS 

Interface Task Registers. 
Enter the number of 

pSOS Interface task 
registers. 

Note: Default value is 

32. 

19. Click Finish. The target code will be generated into the destination path you defined 

in step 5 as shown in Figure6_36. 

NOTE: If it is not able to generate the target code, the system will throw up an error.  

Figure6_36: Target Code Generation Output 

  



Application Common Operating Environment User Manual 
 

  194 

 

You can view the AppCOE generated optimized code in Figure 6_37. 

Figure 6_37: AppCOE Generated Example 

 



Application Common Operating Environment User Manual 
 

  195 

Generating Project Files for your Target 

 

NOTE: This feature requires a target license. Click http://mapusoft.com/contact/ to send a 

request to receive licenses and documentation.  

AppCOE provides the ability to generate project files for project files for the following 

targets: 

• Wind River’s Workbench 2.6, 3.1, 3.3 

• LynxOS Luminocity 3.0.5 

• MQX Code Warrior 10.x 

• QNX’s Momentics 4.x 

• Sun Microsystem’s Sun Studio  

• Visual Studio.NET 2005 

• Micro Soft’s Visual Studio 2006  

• Micro Soft’s Visual Studio .Net 2008  

• Micro Soft’s Visual Studio .Net 2012 

• Eclipse’s CDT 4.x 

• Makefiles 

After Generating Optimized Target Code,select the check box next to Generate a Project 

File and choose your IDE as shown inFigure  6_3. 

Figure 6_38: Generating Project Files 

  

http://mapusoft.com/contact/


Application Common Operating Environment User Manual 
 

  196 

Inserting Application Code to Run only on Target OS Environment 

The user configuration is done by setting up the appropriate value to the pre-processor 

defines found in the cross_os_usr.h. 

NOTE: Make sure the OS Abstractor libraries are re-compiled and newly built whenever 

configuration changes are made to the cross_os_usr.h when you build your application. In 

order to re-build the library, you would actually require the full-source code product version 

(not the evaluation version) of OS Abstractor. 

Applications can use a different output device as standard output by modifying the 

appropriate functions defines in os_target_usr.h along with modifying os_setup_serial_port.c 

module if they choose to use the format Input/output calls provided by the OS Abstractor. 

You can add some application code or target specific things such as memory allocations 

such as Heap Size and Shared memory which are specific to target environments. 

Target OS Selection 

Based on the OS you want the application to be built, set the following pre-processor 

definition in your project setting or make files 

Table 6_17: Target OS Selection 

Flag and Purpose Available Options 

OS_TARGET  

To select the target 

operating system. 

 

The value of the OS_TARGET should be for the  OS 

Abstractor Interface product that you have purchased. 

For Example, if you have purchased the license for : 

OS_NUCLEUS –  Nucleus PLUS from ATI 

OS_THREADX – ThreadX from Express Logic 

OS_VXWORKS – VxWorks from Wind River Systems 

OS_ECOS – eCOS standards from Red Hat 

OS_MQX - Precise/MQX from ARC International 

OS_UITRON – micro-ITRON standard based OS 

OS_LINUX - Open-source/commercial Linux 

distributions 

OS_WINDOWS – Windows 2000, Windows XP, 
Windows CE, Windows Vista, Windows 7/8 from 

Microsoft. If you need to use the  OS Abstractor 

Interface both under Windows and Windows CE 

platforms, then you will need to purchase additional 

target license. 

OS_TKERNEL – Japanese T-Kernel standards based 

OS 

OS_LYNXOS - LynxOS from LynuxWorks 

OS_QNX – QNX operating system from QNX 

OS_LYNXOS – LynxOS from LynuxWorks 

OS_SOLARIS – Solaris from SUN Microsystems 

OS_ANDROID – Mobile Operating System running on 

Linux Kernel 

OS_NETBSD – UNIX like Operating System 

OS_UCOS – UCOS from Micrium 

OS_FREERTOS-- FreeRTOS from Real Time Engineers 

Ltd. 

For example, if you want to develop for ThreadX, you 

will define this flag as follows:  

OS_TARGET = OS_THREADX 



Application Common Operating Environment User Manual 
 

  197 

Flag and Purpose Available Options 

PROPRIETARY OS: If you are doing your own porting of  

OS Abstractor Interface to your proprietary OS, you 
could add your own define for your OS and include the 

appropriate OS interface files within os_target.h file. 

MapuSoft can also add custom support and validate the 

OS Abstraction solution for your proprietary OS 

platform 

Running AppCOE Generated Code on your Target 

NOTE: This feature requires a license and documentation.  

Click http://mapusoft.com/contact/ to send a request to receive licenses and 

documentation.  

After Generating Optimized Target Codefor your target OS using the AppCOE Optimized 

Target Code Generator, 

1. Using a cross-compiler, compile, link, and download the AppCOE generated code to 

your target.  

2. Port low level drivers and hardware interrupt code as required (refer to  OS 

Abstractor Interface I/O and device driver APIs sections in the reference manual).  

3. Resolve any run time errors.  

  

http://mapusoft.com/contact/


Application Common Operating Environment User Manual 
 

  198 

Chapter 7.App/Platform Profiler 

AppCOE provides the Profiler to collect performance data concerning your application and 

the platform. You can graphically view the data with charts and graphs to find bottlenecks 

system-wide or for a specific task. It enables you to generate API timing report and also do a 

comparison for two timing reports. 

 

This chapter contains the following topics: 

 

About App/Platform Profiler 
 
Opening App/Platform Profiler Perspective 
 
Components on the App/Platform Profiler Window 
 
Viewing App/Platform Profiler Data 
 
Generating API Timing Report 
 
Generating Timing Comparison Report 

  



Application Common Operating Environment User Manual 
 

  199 

About App/Platform Profiler 

 

NOTE: This feature requires a license. Click http://mapusoft.com/downloads/AppCOE-

evaluation/ to request an evaluation license.  

 

The App/Platform Profiler is an add-on to the established AppCOE Eclipse based code 

migration and API optimization technology and is designed to enable data collection.  

 

App/Platform Profiler offers the following: 

• The data collected by the Profiler provides feedback concerning the utilization of 

MapuSoft’s APIs in the project. 

• The reports allow for performance impact analysis by detailing specific API execution 

time during a particular time period as well as the average and total API execution 

times.  

• It enables you to collect data pertaining to the MapuSoft API’s (Platform API 

profiling) and profiling user specific functions (Application Profiling). 

• Users can analyze the data with the included App/Platform Profiler graphical viewer 

which offers area, bar, line, pie, and scatter charts, as shown inFigure 7_1. 

• Profiler enables you to generate a Timing report to view the performance report for 

each API. 

• App/Platform Profiler now enables you to generate Timing Comparison Report. This 

compares two different timing reports and compares the performance report for an 

API at different time and different values. 

 

NOTE 1: In the current release, Profiler feature is not supported in ThreadX and Nucleus 

targets. 

 

NOTE 2:The profiler feature does not generate profiler file XXX.PAL on Solaris target if you 

do code optimization for demo_cross_os with profiler ON. As a workaround, enter the 

following command at the prompt prior to running the demo: 

prctl -n process.max-msg-qbytes -r -v 512KB -i process $$ 

The 512KB is the desired size of the queue and should be sufficient to run this example. If 

the number of messages is increased in cross_os_usr.h, then obviously this value will need 

to be adjusted. 

http://mapusoft.com/downloads/AppCOE-evaluation/
http://mapusoft.com/downloads/AppCOE-evaluation/


Application Common Operating Environment User Manual 
 

  200 

Figure 7_1: App/Platform Profiler  
 

 

  



Application Common Operating Environment User Manual 
 

  201 

Opening App/Platform Profiler Perspective 

From AppCOE main menu, click App/Platform Profiler perspective button as highlighted. 

Or, 

1. On AppCOE main menu, select Window > Open Perspective > Other >Profileras 

shown inFigure 7_2.  

Figure 7_2: Opening App/Platform Profiler Perspective 

 



Application Common Operating Environment User Manual 
 

  202 

You can view App/Platform Profiler Perspective as shown in Figure  7_3. 

Figure  7_3: App/Platform Profiler Perspective 

 



Application Common Operating Environment User Manual 
 

  203 

Components on the App/Platform Profiler Window 

App/Platform Profiler window contains two panes. The left pane has three Profiler 

components listed and on the right pane, you can view the respective details and 

information in a graphical view.  

The three main components of App/Platform Profiler are: 

Profiler Data File–This is the generated profiler data file.  You can view the performance 
report of each API. A profiler data file is saved as a .pal file extension. It has the following 

three components:  

1. System–This displays the system details of your application as shown inFigure 7_4.  

If you select System tab you have the following details which are displayed on the right 

pane as shown inFigure 7_4. 

• Application Info–Application property values 

• Profiler Configuration–Profiling Application values 

Figure 7_4: App/Platform Profiler - System Details 

 



Application Common Operating Environment User Manual 
 

  204 

2. Functions–This displays all the functions called in the application and the time taken 

to execute these functions as shown in Figure 7_5. 

Figure 7_5: App/Platform Profiler System 

 
 

On the bottom of the window, as highlighted, the function properties are displayed such as: 

• Average Function execution time 

• Function with the longest execution time 

• Function with the shortest execution time 

• Number of Functions called in application 



Application Common Operating Environment User Manual 
 

  205 

On the left pane, expand the Functions tab. It displays the following information as shown 

in Figure 7_6. 

• Platform APIs 

• Application Functions 

Figure 7_6: Platform APIs and Application Functions 

 
 

Platform APIs–These are all the OS Abstractor Interface functions called in the 

application. On the x-axis, all the functions are displayed. On the y-axis, all functions 

iterations are displayed. On the bottom of the window the function properties are 

displayed such as: 

• Average Function execution time 

• Function with the longest execution time 

• Function with the shortest execution time 

• Number of  OS Abstractor Interface Functions called in application 



Application Common Operating Environment User Manual 
 

  206 

If you expand the Platform APIs, you can view all the platform APIs called in the application 
as shown inFigure 7_7. On the bottom of the window, the function properties are displayed 

such as: 

• Average execution time 

• Instance with the longest execution time The Task _1in square brackets denote that 

these function properties belong to the Task 1 Thread. 

• Instance with the shortest execution time 

• Total number of times function was called 

If you click on a Platform API, you can view the number of instances of the specific function 

on the x-axis and the time taken for each API on the y-axis.  

NOTE: On top of the profiler view, you can view different measures of time such as: 

• Seconds 

• milli seconds 

• micro seconds 

• nano seconds as highlighted in the Figure 7_7 

This is used to capture the time taken for each instance of the function in different time 
measures. If you click on nano seconds, the time graph will be shown as Time (nano 

seconds) as shown in the Figure 7_7. 

Figure 7_7: Platform APIs 

 



Application Common Operating Environment User Manual 
 

  207 

Application Functions 

 

These are all the user specific functions called in the application. On the x-axis, all the user 

specific functions are displayed. On the y-axis, all functions iterations are displayed. On the 

bottom of the window the function properties are displayed as shown in Figure 7_8 such as: 

• Average Function execution time 

• Function with the longest execution time 

• Function with the shortest execution time 

• Number of times Application Functions are called in application 

Figure 7_8: Application – Functions 

 



Application Common Operating Environment User Manual 
 

  208 

3. Threads–Threads are created to execute any function in an application. IN 

App/Platform Profiler you can view the Thread properties by expanding the Thread tab 

as shown inFigure 7_9. On the bottom of the window the thread properties are displayed 

as shown in Figure 7_9such as: 

• Average Function execution time 

• Instance with the longest total execution time 

• Instance with the shortest total execution time 

• Number of Functions used by this thread 

• Thread ID 

Figure 7_9: App/Platform Profiler – Threads 

 
 

Tasks–These are functions called for each task. If you expand the Task tab, you have the 

following as already discussed under the Functions tab: 

• Platform APIs 

• Application Functions  



Application Common Operating Environment User Manual 
 

  209 

Viewing App/Platform Profiler Data 

NOTE: This feature requires a license. Click http://mapusoft.com/downloads/AppCOE-

evaluation/ to request an evaluation license. 

1. Open the App/Platform Profiler perspective.  

2. From the AppCOE main menu, select Tools >Load Profiler Data File as shown in 

Figure 7_10. 

Figure 7_10: Viewing AppCOE Profiler Data 

 

http://mapusoft.com/downloads/AppCOE-evaluation/
http://mapusoft.com/downloads/AppCOE-evaluation/


Application Common Operating Environment User Manual 
 

  210 

3. Browse to your saved profiler data file, and click Open as shown in Figure 7_11.  

Figure 7_11: Selecting the .pal File Extension to Analyze 

 

 



Application Common Operating Environment User Manual 
 

  211 

Select an API to view the data and right click on Profiler Data Explorer tab to view the 
different graph options as shown in  
Figure 7_12. 

 
 

NOTE: You can select an appropriate graphical viewer to view your profiler data. You 

can view the profiler data in a line chart, bar chart, area chart, or a scatter chart. 

 

NOTE: In case of linux, profiling requires cleaning up the system resources before 

generating the pal file. Therefore profiler gives the data result for all the required 
apis. 

• cleanup.pl could be found in 

AppCOE<installdir>/Tools/cleanup/cleanup.pl. 

NOTE: You can select an appropriate graphical viewer to view your profiler data. You 

can view the profiler data in a line chart, bar chart, area chart, or a scatter chart. 

 

 

Figure 7_12: Selecting the API to view the Profiler Data 

 

  



Application Common Operating Environment User Manual 
 

  212 

Generating API Timing Report 

 

NOTE: This feature requires a license. Click http://mapusoft.com/downloads/AppCOE-

evaluation/ to request an evaluation license.  

 

AppCOE now provides you a new feature to view the performance report for each API.  

 

To generate API Timing Report: 

1. From the AppCOE main menu, go to Profiler perspective and select any Profiler 

Data on your left pane to generate the report. 

2. Select Tools > Generate Report. You can also click on Generate Report button 

 on the AppCOE Tool bar as shown inFigure 7_13.  

Figure 7_13: Generate Timing Report 

 
 

  

http://mapusoft.com/downloads/AppCOE-evaluation/
http://mapusoft.com/downloads/AppCOE-evaluation/


Application Common Operating Environment User Manual 
 

  213 

A Save As window is displayed. Select the directory where you want to save the report and 
enter a file name for the report and click Save as shown in  
Figure 7_14. 

 

NOTE: In Windows Vista and Windows 7 Windows 8, you cannot generate the profiler 

report on c:\, if UAC is turned on. To turn off UAC, refer to the Turning Off UAC. You can 

generate the Timing report to generate in any sub-folder inside C drive. For Ex: 
C:\pal_report.rtf. 

 

Figure 7_14: Saving the Timing Report 

 
 

3. Your Timing Report is successfully generated as an .rtf file extension.  The 

Timing Report displays the following information: 
 

1. Timing Information—The timing information gives a detailed description of 

the following: 

 
• Best Time Value – Specifies the minimum time taken to perform the 

action on each platform API 

• Worst Time Value – Specifies the maximum time taken to perform the 

action on each platform API 

• Average Time Value – Specifies the average time taken to perform the 

action on each platform API 
2. Application Information—When you perform the application profiling on 

AppCOE , the report displays the following application property values: 

• Total system memory limit–Specifies the total system memory pool 

limit of the application. 

• Size of the system memory pool– Specifies the size of the system 

memory pool of the application. 

• Minimum memory pool segment size– Specifies the minimum size of 

the memory pool segment of the application. 



Application Common Operating Environment User Manual 
 

  214 

• OS Changer VxWorks Interface–Specifies if you have enabled OS 

Changer VxWorks Interface. 

• pSOS Interface– Specifies if you have enabled pSOS Interface. 

• POSIX/LINUX Interface– Specifies if you have enabled POSIX/LINUX 

Interface. 

• OS Abstractor Interface– Specifies if you have enabled the  OS 

Abstractor Interface. 

• Process mode– Specifies if the  OS Abstractor Interface process 

feature is enabled or disabled. 

• Task pooling– Specifies if the Task pooling feature is enabled for this 

application.  

• ANSI Memory– Specifies if you want to map ANSImalloc() and free() to  

OS Abstractor Interface equivalent functions.Note: We no longer 

support this feature in 1.8 AppCOE 

• ANSI format IO– Specifies if you want to map ANSIprintf() and 

sprintf() to  OS Abstractor Interface equivalent functions.Note: We no 

longer support this feature in 1.8 AppCOE 

• Debug Information level– Specifies if you want to enable the debug 

output. 

• Error checking– Specifies if you want to enable the error checking. 

• Fatal Error– Specifies if you want to enable the feature to ignore fatal 

errors. 

 

3. Profiler Configuration—When you perform profiling on AppCOE APIs, the 

report displays the following profiling application values: 

• File name–Specifies the name of the .pal file generated by  OS 

Abstractor Interface 

• Project name–Specifies the name of your project 

• Target name–Specifies the target OS you have selected for profiling 

• File size–Specifies the size of the file to be profiled 

• Profiler XML format–Specifies the version of the XML used for 

profiling 

• Process name and ID–Specifies the process name and the ID 

• User Data–Specifies the information provided by the user 

• Profiling start time–Specifies the starting time of profiling 

• Profiling stop time–Specifies the end time of profiling 

• Total time profiled–Specifies the total time taken for profiling. 

• Number of profiling messages– Specifies the number of profiler 

messages. 

  



Application Common Operating Environment User Manual 
 

  215 

Generating Timing Comparison Report 

 

NOTE: This feature requires a license. Click http://mapusoft.com/downloads/AppCOE-

evaluation/ to request an evaluation license.  

 

AppCOE now provides you a new feature to view the comparison of two different 
performance reports for the APIs. You can generate a timing comparison report only when 

the following preconditions are met: 

• Both the PAL files must have the same project name. 

• Both the PAL files must have a profiling time less than 5 minutes. 

Note:Do not generate PAL files within 60 seconds. 

 

To generate Timing Comparison Report: 

 
1. From the AppCOE main menu, go to Profiler perspective and select any Profiler 

Data on your left pane to generate the report. 

2. Select Tools > Generate Comparison Report. You can also click on Generate 

Comparison Report button  on the AppCOE Tool bar as shown inFigure 

7_15.  

Figure 7_15: Generate Timing Comparison Report 

 

 
  

http://mapusoft.com/downloads/AppCOE-evaluation/
http://mapusoft.com/downloads/AppCOE-evaluation/


Application Common Operating Environment User Manual 
 

  216 

3. An Import PAL file window is displayed. Select the PAL file by clicking on the 
Browse button or entering the second PAL file path in the text box. A Profiler 

Categorization Dialog box is displayed. NOTE: If you comparing the two PAL files 

for the first time, click OK. If you are comparing the same two files for the 

second time, click Cancel. as shown in Figure 7_16. 

Figure 7_16: Import PAL File 

 

 

  



Application Common Operating Environment User Manual 
 

  217 

The field descriptions for importing the PAL file are described as follows: 

Table 7_1: Field descriptions for importing the PAL file 

Field  Description Your Action 

Select PAL File Specifies you to 

select the PAL file 

for which the 
Timing Comparison 

Report has to be 

generated. 

To select the PAL file, click Browse, 

and select it from your system. 

Report for Specifies what you 

are comparing. 

You can do any one of the following, 

and click Next: 

• To compare only the differences, 

select the radio button before 
Differential Data. 

Note: By default, this feature is 

disabled. 

• To compare all the data in the PAL 

files, select the radio button before 

All Data. 

Note: By default, this feature is 
disabled. 

 

4. Select the APIs you want to generate the Timing Comparison Report as shown in 

Figure 7_17,click Finish 

Figure 7_17: Selecting the APIs 

  
  



Application Common Operating Environment User Manual 
 

  218 

 
4. Save As windowwill bedisplayed. Select the directory where you want to save the 

report.Enter a filename for the report and click Saveas shown in Figure  7_18. 

Figure  7_18: Saving Timing Comparison Report 

 

 

6. Your Timing Comparison Report is successfully generated as an .rtf file 

extension as shown in Figure 7_19. 

Figure 7_19: Generated Timing Comparison Report 

 

 

  



Application Common Operating Environment User Manual 
 

  219 

Chapter 8. Introduction to Ada C/C++ Changer 

This chapter contains the following topics: 

 
Ada C/C++ Changer in AppCOE 

  Creating Ada-C Changer project 
Using the Ada Source Directory 

Configuration with Linked Libraries 

Configuration with Multiple Source Directories  

Specifying the Configuration 

 Program Library Options Tool (adaopts) 

 Source Registration Tool (adareg) 

 Adacgen 

Adacgen Options 

 

  



Application Common Operating Environment User Manual 
 

  220 

Ada C/C++ Changer in AppCOE 

 
Note: This feature requires a license. Click http://mapusoft.com/downloads/AppCOE-

evaluation to request an evaluation license. 

 

AdaC/C++Changer–allows developers to easily convert software written in Ada code to 

C/C++ utilizing AppCOE . The resultant C/C++ software can be integrated with the robust 
OS Abstractor® environment to support a wide variety of host and target OS platforms. The 

automatic conversion process eliminates the need for costly and tedious code rewrites, 

providing extensive resource savings. Ada-C/C++ Changer generates ANSI C output as well 

as certain C++ features while preserving Ada code’s comments, files, structures and 

variable names to ease ongoing code maintenance. 

Creating Ada C/C++ Changer Projects 

Note: This feature requires a license. Click www.mapusoft.com/downloads/ to request for 

an evaluation license. 
 

Creating Ada-C Changer project 

Ada-C Changer converts Ada 83 or Ada 95 Programs to C Source Code and keeps the C 

Source Code in Projects.  

1. From AppCOE main window, select any project under C/C++ Projects tab on the 

left pane.  

2. Select New > Ada-C Changer Project as shown inFigure  8_1. 

Figure 8_1:  Ada-C Changer project 

 

 

  

http://mapusoft.com/downloads/AppCOE-evaluation
http://mapusoft.com/downloads/AppCOE-evaluation
http://mapusoft.com/downloads/ospal-evaluation/


Application Common Operating Environment User Manual 
 

  221 

Creating Ada-C++ Changer project 

Ada-C++ Changer converts Ada 83 or Ada 95 Programs to C++ Source Code and keeps 

the C++ Source Code in Projects.  

1. From AppCOE main window, select any project underC/C++ Projects tab on the left 

pane.  

2. Select New >Ada-C++ Changer Project as shown inFigure 8_2. 

Figure 8_2:  Ada-C++ Changer project 

 

 
 

Note 1: win32 and gnat compatibility are not supported under 64 bit AppCOE 

Build. 

 

 

 

 

 

 

 

 

 

 

 

  



Application Common Operating Environment User Manual 
 

  222 

Creating New Ada-C Template project: 

New Ada-C Template (Hello World)project converts a Hello World Ada Program to C 

Source Code and keeps the C Source Code in Projects.  

1. From AppCOE main window, select any project underC/C++ Projects tab on the left 

pane.  

2. Select New >New Ada-CProject as shown inFigure  8_3. 

Figure  8_3:  Create Ada-C Template 

 

 

 

 

 

 

 

 

 

 

 

 

 



Application Common Operating Environment User Manual 
 

  223 

Creating Ada-C++Template project: 

Ada-C++ Template (Hello World)project converts a Hello World Ada Program to C++ 

Source Code and keeps the C++ Source Code in Projects.  

1. From AppCOE main window, select any project underC/C++ Projects tab on the left 

pane.  

2. Select New >New Ada-C++ Project as shown inFigure  8_4. 

Figure  8_4:  Create Ada-C++ Template 

 

Note 1: win32 and gnat compatibility are not supported under 64 bit AppCOE 

Build. 

 

 

 

 

 

 

 

 

 

  



Application Common Operating Environment User Manual 
 

  224 

Using the Ada Source Directory 
 

The Ada Source directory contains all information needed to support the separate 

compilation requirements of Ada. The primary contents of the Source directory are Ada 

source files, all object modules and info files created by the compiler are stored in the 

AppCOE Projects. Since no intermediate compilation form is saved, the Ada C/C++ Changer 
performs a semantic analysis of the appropriate source files, as necessary, to handle any 

separate compilation requirements.  

Figure 8_5:  Import Ada Files 

 
 

 

This source-based program library model simplifies the use of the AdaC/C++ Changer and 

program builder: 

• There are no compilation order requirements for compiling Ada source. As long as 

the Ada source for depended-upon units is available, it is not necessary to compile 

them first. 

• There are no constraints on the user’s approach to file organization or configuration 

management. 

• There are no significant disk storage requirements for the program library beyond 

that required for the source and object modules. 

  



Application Common Operating Environment User Manual 
 

  225 

Ada Source Directory 

In Ada Source directory, you inform the library of the location of the Ada source for the 

program. The source can be in one directory, in multiple directories, or in multiple program 

libraries. Once this information is provided, the Ada C/C++ Changer and program builder 

can automatically locate source files containing the required units, as needed. The following 

subsections describe the program library, with details about how the Ada C/C++ Changer 
and program builder use this program library.  
Two tools are provided for maintaining the program library: 

• The program library options tool, adaopts, can be used to display or modify the 

program library parameters. This creates ADA.LIB. 

• The source registration tool, adareg, establishes which units are defined in which 

source files. A description of the use of these tools follows the description of the 

program library. This creates UNIT.MAP. 

An Ada program library is based in a directory called the program library directory. All 

information about the program library and all generated files are kept in the program 
library directory (or unspecified subdirectories).The main contents of the program 

library are the source files and object modules. There is considerable flexibility with 

regard to the actual location of the source files. This will be evident in the examples 

that follow.Configuration with Multiple Source Directories 
In a larger program, the source files composing the Ada program are often located in several 

directories. To support this source configuration, the program library provides a source 
directory list which points to the directories containing the source. In this configuration, the 

source can be distributed in any convenient way among any number of source directories.  

Configuration with Linked Libraries 

For more complex programming efforts, it may be desirable to partition the source code into 

sub systems, each of which is maintained within a separate program library. To support 
this model, the Ada program library supports linking to other existing libraries. The user 

need not know the location of the source for a linked library, just its program library 

directory. If the linked library is itself linked to another library, that library also needs to be 

added as a linked library for the current library. The source files and object modules of a 

linked library may only be referenced in a read-only fashion.  

Specifying the Configuration 

The program library’s configuration is determined by the values of program library 

parameters. The configuration described above is the default configuration created 

automatically by the first invocation of the Ada C/C++ Changer. The primary difference 

between the “multiple source directories” model and the “multiple linked libraries” model is 

what happens when adabgen discovers that a source file needs to be [re]compiled: 

• If the source file is part of this program library, adabgen will recompile it. 

• If the source file comes from a linked library, adabgen will refuse to recompile it, and 

will give an error message. 

Therefore, the “multiple source directories” model is more convenient for most projects. 

ADA.LIB and UNIT.MAP 

An Ada Changer tools contains two files—ADA.LIB and UNIT.MAP. These two files, which 

are located in the project are automatically created the first time the Ada C/C++ Changer, is 

invoked. ADA.LIB contains information describing the configuration of the library. 
UNIT.MAP contains a unit-to-source mapping for use by the compiler and program builder. 

When the program library is created, if a UNIT.MAP file already exists in the current 

directory, it will be used for the new program library’s UNIT.MAP. 

 

 

 
 



Application Common Operating Environment User Manual 
 

  226 

 
Source Files 

The Ada source files in the program library include: 

• All Ada source files in the program library directory 

• All Ada source files in directories specified in the program library’s source directory 

list. 

• Any other source files which have been registered in the UNIT.MAP. 

• To be automatically recognized as Ada source files, the files in a directory must have 

one of the following file extensions: .a, .ada, .adb, .ads, .bdy, .dat, .spc, .sub. You 

can also use any new extensions of user choice as shown in Figure 9_2. 

• There is no naming restriction for source files explicitlyregistered. Source files in the 

UNIT.MAP of linked libraries are not contained in the current program library, but 

they are visible for read-only reference by the compiler and program builder. 

  



Application Common Operating Environment User Manual 
 

  227 

Generated Files 

The Ada C/C++ Changer output also includes files generated by the compiler or 

program builder. These include: 

• Object module files (*.o or *.obj) and information files (*.info) for Ada source files in 

the program library. 

• Executable files (*.exe) for main units in the program library. 

• Optional listing files (*.lst). 

• Optional cross reference files for use by the cross reference compiler option. 

• Other intermediate files, if kept (see the -ke option). 

Ada C/C++ Changer Library Interaction 

The Ada C/C++ Changer uses the program library to locate the source files needed to 

handle semantic dependencies during compilation of a specified source file. Some of the 

situations in which this may occur are the following: 

• To locate a with’ed unit or the parent unit for a separate clause or child unit 

• To locate the library unit specification, if any, when a library unit body is being 

compiled 

• To locate the body of a generic, if any, when the generic is instantiated 

• To locate the body of a subprogram in another library unit to which pragma Inline 

applies 

• To locate the body of a stub contained in a subprogram 

This requires a method for locating a source file from a unit name during compilation. This 

is only required if the needed unit is in a source file that has not yet been analyzed in the 

current invocation of the compiler. 

Locating the Source File 

The order of the search for locating a unit during compilation is as follows: 

• First, check the UNIT.MAP of the program library; 

• Then, check the UNIT.MAP of each linked library in the order of the library search 

list. 

Ada Program Builder/Library Interaction 

The Ada program builder uses the Ada program library to locate the object module file and 

the information file for each unit needed in the main procedure. Since the names of these 
files are based on the source file name, the unit-to-source correlation is required. The 

method used to determine this is similar to that used by the compiler. 

Locating the Information File and Object Module 

To determine the name of the source file, the program builder checks to see if a unit is 

registered in the program library or any linked library. Thus, the effective order of the 

search by the program builder is: 

• First, check the UNIT.MAP of the program library 

• Then, check the UNIT.MAP of each linked library in the order of the library search 

list 

Once the source file name is found, it may be that the corresponding information and object 

module files do not exist because the source was never compiled, or they are out-of-date 

because the source file, or some source file on which it depends, has changed. If the 

missing or out-of-date object module belongs to a source file in one of the linked libraries, 

the program build will fail because linked libraries are read only. Otherwise, the program 
builder implicitly invokes the Ada C/C++ Changer to create the needed object module and 

information file. 

 

 

 
 



Application Common Operating Environment User Manual 
 

  228 

Predefined Run Time System  

There is ‘C’ run-time sources that provides I/O, tasking, exception handling, and memory 

management modules which are normally required by Ada 95 language for the ‘C’ converted 

code base. These are called Ada run time system (RTS). 

Program Library Options Tool (adaopts) 

Overview 

The program library options tool (adaopts) supports tailoring the program library to meet 

the needs of a particular Ada project. For small Ada projects, it is unlikely that this tool will 

be needed because the behavior of the compiler and builder are, by default, configured for 

small projects. 

For more complex programs, the user may direct the program library options tool to 

distribute source to multiple directories, create links to existing program libraries, place 

object modules in a separate subdirectory, etc. 

The program library options tool supports the following functions: 

• Creating a new program library. 

• Listing all or specific values for the program library options. 

• Modifying the source directory list, the library search list, the object file 

subdirectory, the information file subdirectory, or the cross reference file 

subdirectory. 

Listing the source file names or library unit names registered in the program library. 

Program Library Options Tool Outputs 

The program library options tool modifies the ADA.LIB file in the project directory.  

Messages 

Messages and displays generated by adaopts are written to standard error. 

Source Registration Tool (adareg) 

Overview 

The source registration tool (adareg) maintains the UNIT.MAP file. The UNIT.MAP file, which 

is located in the project directory, contains the unit-to-source correlation of all source files 

that have been registered in the program library. The source registration tool is used to 

register additional source files in the program library. 

The source registration tool provides the following function: 

• Explicit registration of a specified source file(s) 

Registration is performed by doing a syntax analysis of a source file to determine the name 
and kind of the units in the file, and then adding that information to the UNIT.MAP. When 

the source registration tool is invoked with a list of source files or directories containing 

source files, registration is performed on all files specified on the command line. When the 

source registration tool is invoked with a directory name, it registers all files with the 

following extensions: .a, .ada, .adb, .ads, .bdy, .dat, .spc, .sub. This is stored in your newly 

created Ada C/C++ Changer project 

Conflicts during Registration 

The following restrictions apply to source file registration: 

• Two source files with the same simple file name, exclusive of the directory path, 

cannot be simultaneously registered. 

• Two source files containing the same library unit cannot be simultaneously 

registered. 

If either of these situations arises during source file registration, the source files are said to 
conflict and one of the source files and its units overrides the other, depending on whether 

the registration is explicit or automatic. Explicit registration of a source file, either by 

compiling or by the source registration tool, overrides any previously registered source files 

with which it conflicts. When a registered source file is overridden, it remains in the 

UNIT.MAP, but its units are marked as Invalid. 



Application Common Operating Environment User Manual 
 

  229 

Source Registration Tool Outputs 

The source registration tool modifies the UNIT.MAP file in the current directory. All source 

registration tool messages are written to standard 

 

Adacgen 

The Ada-Compiler translates Ada 95 source programs into relocatable object modules and 

records dependency information for use by the program builder. It optionally generates 

source listing, assembly listing and debugger information for use by the symbolic debugger. 

The Ada C/C++ Changer consists of two phases—the front end and the back end. The front 

end performs syntactic and semantic analysis. It generates C source files as input to the 
back end. The back endof the Ada C/C++ Changer is an ISO/ANSIC compiler. It performs 

code generation, applies optimizations, and generates a relocatable object module. 

 

Compiler Inputs 

Invocation 

adacgen [option…] [file…] 

The adacgen command invokes the Ada C/C++ Changer for one or more files. If the 

specified source files have semantic dependencies on other units, the source files for those 

units must be located either in the program library or in one of the linked libraries. If a 

source file depends on a library unit not yet processed by the current invocation of the 
compiler, the compiler will find and process that library unit (through the front end only) 

provided that the source file containing the required library unit has been registered in the 

program library or is in a linked library. This proceeds recursively, if necessary, until the 

closure of all depended-upon library units have been processed.  

 
Listing Options 

For the listing options, the compiler generates the requested listing for each file specified on 

the command line. 

Table 8_1: Compiler Generates the Requested listing Options for Each 

File 

Listing Options Description 

-lc* The -lc option causes the compiler to generate a 

continuous source listing without pagination or 

headers. Any errors or other compiler-generated 
messages are interspersed in the listing. The listing 

is written to file.lst. 

-le* The -le option causes the compiler to generate a 

source listing only if there are errors. If neither -lc, -

lp, or -lr are specified, the listing is generated 

without pagination or headers, with interspersed 
error messages, as if -lc had been specified. The 

listing is written to file.lst. 

-lf filename When used in conjunction with the -lc, -le, -lp, or -lr 

option, the -lf option causes the compiler to write 

the listing to filename instead of the default file.lst. 

-lp* The -lp option causes the compiler to generate a 

line-numbered listing with pagination and a header 
at the top of each page. The page is 60 lines long 

and 80 columns wide. Any errors or other compiler-

generated messages are interspersed in the listing, 

which includes all messages generated by the 

compiler. The listing is written to file.lst. 



Application Common Operating Environment User Manual 
 

  230 

Listing Options Description 

-lr* The -lr option causes the compiler to generate a 

listing containing only those lines for which compiler 
messages were generated, as well as the compiler 

messages. The listing is written to file.lst. 

-lx* The -lx option causes the compiler to generate a 

cross reference listing. This cross reference listing is 

a line-numbered listing followed by a cross reference 

table. This listing is written to file.xlst. A binary 
cross reference file file.ref will also be generated. 

-pl length* This sets the page length for the paginated source 

listing to length lines. This option has no effect 

unless used in conjunction with the -lp option. 

-pw width* This sets the page width for the paginated source 

listing to width columns. This option has no effect 

unless used in conjunction with the -lp option. 

-nh No headers in listings. 

* The marked Adabgen options are already added in Ada-C/C++ Changer. Do not 
add these in your additional options tab. If you add these options, it will break 

your application. 

Message Options 

-m msg_kind This suppresses the display of any messages of 

msg_kind. 

+m msg_kind This enables the display of any messages of 

msg_kind. 

-mrmsg_kind This suppresses the display of any messages of 

msg_kind for the current invocation of the compiler 

and for any recursive invocation of the compiler. 

+mrmsg_kind This enables the display of any messages of 
msg_kind for the current invocation of the compiler 

and for any recursive invocation of the compiler. The 

valid values for msg_kind are: 

i. a — all messages, except that “-m a” does not 

suppress error messages. 
ii. d— implementation-dependent messages. 

iii. e— error messages. 

iv. i— information messages. 

v. n— not-yet-implemented messages. 

vi. w— warning messages. 

vii. r— redundant messages 

By default, all messages except information and redundant messages are displayed for the 

current invocation of the compiler. For recursive invocations, no messages are displayed by 

default. For convenience, “-m a”, will suppress all messages except errors. 

Adacgen Options 

Table 8_2: adacgen Options 

Options Description 

-0 The -0 option identifies the version number of the 

executable. (That’s a zero, not an oh) 

-a If the -a option is specified, compilation will stop after 
semantic analysis. No output is generated. 

-c If the -c option is specified, compilation will stop after 

the front end. No output is generated. 

-discard_names This option has the same effect as using pragma 

Discard_Names. 



Application Common Operating Environment User Manual 
 

  231 

Options Description 

-e count The -e count option causes the compiler to report only 

the first count errors. The default is 100. 

-eo The -eo option enables optimizations that are performed 
by the front end. This is the default. 

-ga Generate Ada-oriented debugging information. The –ga 

option causes the compiler to generate the appropriate 

code and data for operation with the C debugger, but in 

a way that should cause it to display the Ada source 

code rather than the C source code. 

-gc Generate C-oriented debugging information. The -gc 
option causes the compiler to generate the appropriate 

code and data for operation with the C debugger. This 

option also causes the intermediate C source files to be 

saved for use as program source files for the debugger, 

providing C-source-level debugging. 

-help or -h The -help option shows the different options that can be 
used with the adacgen command. 

-late_inlines The late-inlines option allows pragma Inline to be 

specified after a specless subprogram body. This option 

provides compatibility with Ada 83, and allows more 

aggressive inlining. 

-N check* Suppresses numeric checks. The check can be one of: 

• division_check 

• overflow_check 

These checks are described in the RM. Using -N reduces 

the size of the code and increases its speed. Note that 
there is a related adacgen option, -s, to suppress all 

checks for a compilation. 

-noeo The -noeo option disables optimizations that are 

performed by the front end. 

-noxr The -noxr option disables generation of cross reference 

information by the compiler for use by a browser. This is 

the default. 

-Olevel The -O option (that’s an oh, not a zero) controls the 
optimizations that are performed by the compiler back 

end. The accepted values for level are none, all, debug, 1, 

2, and 3. These have the following effect: 

• None— disable all optimizer options. 

• All— same as -O3 

• Debug — disable optimizations that substantially 

interfere with debugging. No optimizations are 

specified for the C compiler back end. 

• 1— pass -O1 to C compiler back end. 

• 2— pass -O2 to C compiler back end. 

• 3— pass -O3 to C compiler back end. 

If the -O option is not specified, -O1is passed to the C 

compiler back end (e.g. gcc). 

-of file* The -of option causes the compiler to read options and 
file names from the specified file. These are processed as 

though the contents of the file were on the command 

line. 

-pB “BE options” The -pB option passes the specified BE options to the 

back end. All text within the quotations is passed 

directly to gcc. These options precede the other options 
that adacgen generates and passes to gcc. 

-prl Record layout listing for packed record types. 



Application Common Operating Environment User Manual 
 

  232 

Options Description 

-q* The -q option specifies quiet mode. It suppresses all 

nonessential messages. 

-rl Record layout listing for all record types. 

-s The -s option suppresses all automatic runtime 
checking, including numeric checking. This option is 

equivalent to using pragma Suppress on all checks. 

-sleh Suppress Language Exception Handlers. If this option is 

specified, exception handlers that handle predefined 

exceptions (Constraint_Error, Program_Error, 

Tasking_Error, and Storage_Error) are removed from the 
program, if the exception is always propagated. 

-speh Suppress Propagating Exception Handlers. Same as -

sleh, but applies to user-defined exceptions as well. 

-

suppress_aggregate_temps 

This option has the same effect as using pragma 

Suppress_Aggregate_Temps. 

-T The -T option causes the compiler to report timing 

information for the compilation of each source file 

specified on the command line. 

-v The -v option specifies verbose mode. 

* The marked Adabgen options are already added in Ada-C/C++ Changer. Do not add 
these in your additional options tab. If you add these options, it will break your 

application. 

 

Options for Maintainers 

The following options are provided for use by maintainers of the compiler. 

Table 8_3: Options For Maintainers 

Options Description 

-b The -b option causes the message file (created by the front 

end) to be retained; normally it is deleted, as its contents are 

cryptic. 

-f* The -f option forces the generation of intermediate files even 

if the compiler finds errors. 

-ke* The -ke option specifies that intermediate files, which are 
normally deleted, are to be kept. 

-ki* Keep the information file generated by the compiler. The 

information file is generated by default except when the –a 

or -c option is used, or if the compilation terminates without 

generating an object module file. 

-ne The -ne option specifies that the adacgen process will not be 

restarted on failure. If the -ne option is not specified, the 

adacgen process will restart upon severe internal error such 
as a segment violation, bus error, or assertion failure. The 

process will restart with the file that was being processed 

when the failure occurred. If the file causes a severe error 

again, adacgen will restart with the next file to prevent 

infinite reprocessing of that file. 

-nl The -nl option specifies that the adacgen process will be 
restarted with the next file after the file that was being 

processed when the failure occurred. The default behavior 

without -nl is to restart with the file that caused the failure. 

(See also -ne.) 

-nonr The -nonr option specifies that the compiler front end may 

release any heap memory to the current heap. 

-nz The -nz option initializes all heap memory used by the 

compiler front end to a nonzero value. In hex, the nonzero 



Application Common Operating Environment User Manual 
 

  233 

Options Description 

value is BAD1BAD1so it is easy to spot in the debugger, and 

causes a Bus Error on a Sparc when it is dereferenced. 

-pL “L options” The -pL option passes the specified L options to the lister. 

-t The -t option generates a trace message as each declaration 
and statement is passed to the emitter phase of the front 

end. 

-xB exe-path The -xB option overrides the default back end and uses exe-

path instead. 

-xddir-path The -xd option overrides the default ADA_MAGIC 

environment variable and uses dir-path instead. 

-xL exe-path The -xL option overrides the default lister and uses exe-path 

instead. 

+bw This displays all warning messages generated by the Ada 
C/C++ Changer  back end (e.g. by GCC). 

* The marked options are already added in Ada-C/C++ Changer. Do not add these in 

your additional options tab. If you add these options, it will break your application. 

Compiler Output Files 

Files produced by compilations are: 

Table 8_4: Compiler Output Files 

Output Files Description 

file.info  Information recorded during compilation of a source file 

which is used by the program builder to determine if the 

object module is valid. 

-file.o or file.obj Relocatable object module files, one for each source file in 

the compilation. 

 

These output files are placed according to the program library parameters. Also produced 
are various intermediate files; these are usually deleted as a matter of course unless the -ke 

option is specified. 

Additional files that may be produced by a compilation are: 

Table 8_5: Additional Compiler Output Files 

Output Files Description 

file.lst Source listing if any of the -lp,-lc or -lr options are specified. 

file.xlst Cross reference listing if the -lx option is specified. 

file.xref Cross reference information in a binary format. This is for 

use by a browser and the cross reference lister. 

 

Compile-Time Messages 

All compiler messages are written to AppCOE Console View. When error messages are 

printed, processing does not proceed beyond the front end. No intermediate files or object 

code files are produced. Warning and other informational messages do not prevent further 

processing. The back end (i.e. C compiler) may print error messages as well; however, these 

will be error messages related to problems internal to the compiler itself. The option “-m a” 
can be used to suppress all warning and informational messages generated by the compiler. 

If there is an internal error in the compiler, the options -v and/or -t and/or +mr a can be 

used to help determine what part of the compiler contains the error; this might help you 

work around the problem. 

The compiler may implicitly perform semantic analysis of other source files in the program 

library or in a linked library during an invocation in order to handle semantic dependencies 
on other compilation units. Compile-time messages generated during implicit processing 



Application Common Operating Environment User Manual 
 

  234 

are displayed only if the +mr option is used. Otherwise, compile-time messages are written 

only for processing of the source file(s) specified in the adacgen command. 

Adabgen 

The Ada program builder provides the facilities for creating a load module for an Ada 

program. It finds the object modules needed to build the executable, determines the 

elaboration order, and invokes the target linker to generate the load module. 

In addition, the program builder implicitly invokes the compiler as needed so that all object 

modules are up-to-date with respect to any source files on which they depend. In fact, it is 

not necessary for the user to invoke the compiler directly at all — the entire program 

building process, including compilation, can be handled by the program builder, if desired. 

The load module generated by the program builder is in the format created by specified 

linker. 

 

Program Builder Processing 

Program builder processing is divided into two phases — prelinking and linking. The 

prelinking phase handles those Ada 95 requirements that are processed at build time and 

identifies the list of object modules that make up the program. The linking phase invokes 

the target linker to combine the object modules to form a load module with all references 
resolved. 
Prelinking 

The prelinking phase performs three functions: 

• It determines the complete list of units needed for the main procedure; 

• It finds or generates all object modules for the units on this list, ensuring that they 

are up-to date 

• It determines an acceptable elaboration order. 

To perform these functions, the prelinker uses the information files generated by the Ada 

C/C++ Changer. These files contain the names of depended-upon and needed units. For a 

description of how the information files in the program library are found. 

Finding the information files results in implicit invocations of the compiler for source files or 

units in the current program library if: 

• The source file containing a needed unit has either never been compiled  

• Or has been modified since it was last compiled 

• Or a source file on which a unit depends has been modified since the unit was 

compiled. 

The program builder uses time stamps to determine if a source file has been modified. 

The prelinking phase handles all of the compilation order and completeness requirements 
for building the Ada program. If a part of the program is missing, or if the Ada source code 

contains incorrect dependencies, the prelinking phase will detect and report this. 

Linking 

The linking phase of the program builder is handled by the linker.The linking phase uses 

the default C runtime library as well as the Ada run time library. 

Adabgen Inputs 

Invocation 
adabgen [option…] [main-procedure-name…] 

The adabgen command creates an absolute load module for the main procedure. The 
adabgen command must be invoked in a program library directory. If the current directory 

is not a program library directory, a program library is automatically created there.  

The main-procedure-name must be a procedure for which the Ada source for all needed 

units is located either in the program library, or in one of the linked libraries. Multiple main 

procedures may be built in a single invocation of the builder.  



Application Common Operating Environment User Manual 
 

  235 

NOTE: Do not confuse the name of the source file containing the main unit (e.g. simple.ada) 

with the main unit name (e.g. simple). 

 
adabgen Options  

 
In addition to the options listed below, adabgen accepts all compiler options. These are 

applied to all invocations of the compiler that are made by the program builder. 

Table 8_5:adabgen Options 

Options Description 

-0 The -0 option identifies the version number of the 

executable. (That’s a zero, not an oh) 

-f The -f option forces linking to occur even if there are 

prelinker errors. 

-ga Generate Ada-oriented debugging information. The -ga 

option causes the program builder to build an 
executable containing Ada-oriented debugging 

information. The -ga option is also applied to any 

implicit invocations of the compiler during program 

building. 

-gc Generate C-oriented debugging information. The -gc 

option causes the program builder to build an 

executable containing C-oriented debugging 
information. The -gc option is also applied to any 

implicit invocations of the compiler during program 

building. 

-h or -help The -help option shows the options that can be used 

with the adabgen command. 

-ke* The -ke option specifies that intermediate files, which 

are normally deleted, are to be kept. 

-ll option The -ll switch passes option to the target linker. For 
example, to pass “-map foo.map” to the target linker, 

use “-ll -map -llfoo.map”. Options passed via the -ll 

switch follow the options to the linker that is 

generated by the Ada program builder. 

-nc The -nc option prevents recompilation. Normally, the 

Ada C/C++ Changer  is invoked by the adabgen 
command to recompile Ada programs as needed. 

-nl The -nl option prevents calling the linker. The 

prelinker is called but the target linker is not. 

-no The -no option prevents recompilations to recreate .o 

files that are out of date. 

-o file The -o option specifies the name of the output file 

(used instead of the default filename). 

-ol file The -ol file option passes file to the target linker 

-q* The -q option specifies quiet mode. 

-r Use a more “friendly” elaboration order. The default is 

to use an order that is more likely to fail but which 
can lead to more portable programs. 

-v* The -v option causes the program builder to print 

informational messages as processing proceeds. The -

v option is also applied to any implicit invocations of 

the compiler during program building. 

* The marked options are already added in Ada-C/C++ Changer. Do not 

add these in your additional options tab. If you add these options, it will 

break your application. 



Application Common Operating Environment User Manual 
 

  236 

 

Ada C/C++ Changer Outputs 

Output Files 

The Ada program builder generates a corresponding load module for eg., main-procedure-

name.exe. 

Messages 

All program builder messages are written to console view. 

Main features of Ada C/C++ Changer  

The Ada run-time is written in Ada 95, and then translated to C/C++. The run-time is 
layered, and is re-hostable on various operating systems. As delivered, it depends only on 

C’s native setjmp/longjmp, but is structured to allow re-hosting on POSIX/LINUX-like OS’s, 

or other RTOS’s that have support for threads and some kind of “mutex”. 

 

Ada C/C++ Changerconverts 100% of the Ada source into C, with no human intervention. 
Our tool is based on a fully validated Ada C/C++ Changer, which handles the full Ada 95 

language. It produces efficient and readable C that exactly matches the semantics of the 

original Ada program. 

A single Ada source file can have any kind of code within it, though some compilers are 

more restrictive than that and use specific naming conventions (such as Rational’s1.ada 

and 2.ada, or AdaCore’s .ads and .adb). Ada Tool is designed to handle any organization of 
code within source files. Furthermore, even though a source file might contain only a 

package spec, it might still have code that needs to be executed when the package is 

“elaborated.” This code will be placed in the “.c” file for the package spec. Similarly, even 

though a file might contain only a package body, it might have “subunits” or “inlined” 

subprograms that need access to its local declarations, and so those are placed in an “.h” 

file for the body. 

Ada-C/C++ Changer is very portable because the Ada Tool’s RTS relies mostly on the 

standard C run-time. However, C run-time support is not truly “real time” as it uses C 

“setjmp/longjmp” to accomplish multi-threading, which is not very flexible.  

But by adapting the Ada Tool RTS to use the OS Abstractor POSIX/LINUX Interface 

(Mapusoft) APIs, we can use “true” multithreading, and still be very portable to multiple OS 

and RTOSs,  

  



Application Common Operating Environment User Manual 
 

  237 

 

Chapter 9.Working with Ada Changer 

 

This chapter contains the following topics: 

 

Working with Ada C/C++ Changer Projects 

  Ada C Changer Projects with Ada-C/C++ Scheduling 

Ada C Changer Projects with Real-time OS Abstractor Scheduling 

Select Ada-C/C++ Changer build configurations 

Import Ada Source files to project 

ADA C/C++ Changer Configuration Options 

Building Ada C/C++ Changer Projects 

Target Code Generation for Ada C/C++ Changer Projects 

Ada C/C++ Changer Property Page 

ADAC/C++ Changer – Additional Information’s 

Additional Ada C/C++ Changer Tools 



Application Common Operating Environment User Manual 
 

  238 

Working with Ada C/C++ Changer Projects 

Ada-CChanger converts Ada 83 or Ada 95 Programs to C Source Code and keeps the C 

Source Code in Projects.  

1. From AppCOE main window, select any project underC/C++ Projects tab on the left 

pane.  

2. Select New >Ada-C Changer Project as shown inFigure 9_1. 

3. From AppCOE main window, select any project under C/C++ Projects tab on the left 

pane.  

Figure 9_1: Creating Ada-C Changer Project 

 

 
 
 

 

On Ada-C Changer Project Wizard window, type a project name and give a location next to 

Project Name text box.  

Note 1: The project name should not be more than 256 characters. 

Note 2: Please avoid creating an eclipse workspace in a deeply nested sub-directory. 

4. Under Project Types, expand the Executable menu. Select Ada-C/C++ Scheduling 

or Real-time OS Abstractor Scheduling and click Next as shown inFigure 9_2 . 

 

 

 

 

 



Application Common Operating Environment User Manual 
 

  239 

 Figure 9_2: Ada-C/C++ Changer Wizard 

 

Ada C Changer Projects with Ada-C/C++ Scheduling 

Ada C Changer Projects created with Ada-C/C++ Scheduling will not include OS 

Abstractor Features.  

Ada C Changer Projects with Real-time OS Abstractor Scheduling 

Ada C Changer Projects with the Real-time OS Abstractor Scheduling, will include  

OS Abstractor Features. 

 

Note 1:If Real-time OS Abstractor Scheduling option is selected then proceed to 
next step 

 

Note 2:If Ada-C/C++ Scheduling option is selected thenskip step 5. 

 

5. On Basic Settings window, define the basic properties of your project and click 

Nextas shown in Figure 9_3. 
 

  



Application Common Operating Environment User Manual 
 

  240 

Figure  9_3: Basic Settings Window for Ada-C/C++ Changer Project 

 

Select Ada-C/C++ Changer build configurations 

6. On Select Configurations window, select the platforms and configurations for 

deployment and click Next as shown in Figure  9_4. 

Figure  9_4: Select Ada-C/C++ Changer build configurations 

 



Application Common Operating Environment User Manual 
 

  241 

Import Ada Source files to project 

7. On Import Ada Files page, enter the Ada source directories using the Browse button 

as shown in Figure  9_5. 

Figure 9_5: Import Ada Source files to project 

 
  



Application Common Operating Environment User Manual 
 

  242 

The field descriptions for Import Ada Files page are as follows: 

Table 9_1: Field Descriptions for Import Ada Files 

Field  Description Your Action 

Ada Source 

Directories 

The Ada source 

directories contains Ada 

source files, all object 

modules and info files 
created by the Ada 

Changer and stored in 

AppCOE Projects. 

Select the Browse Button to add your 

Ada source directories  

Select the Remove button to remove any 

of the Ada Source directories  
Note: To add or remove the source 

directories after creating the projects,  

go to Project > Properties > Ada 

Changer 
Main Ada 

procedure 

Specifies the main 

procedure name of the 

project the user imports 
that is converted to the 

main C function that will 

be started as thread in 

OS Abstractor or other 

interfaces. 

Select the check box to enter the main 

Ada procedure name. For example: 

Sudoku_Test. 

Note: To import a library project use 

the -all option for the main procedure. 

Enter Ada 
File 

Extensions 

used in 

your Ada 

Project 

Specifies the source files 
that have extensions 

other than the default 

extensions listed in the 

drop down list. The 

default extensions listed 
here are: .a, .ada, .adb, 

.ads, .bdy, .dat, .spc, .sub 

You can do any one of the following: 

• To add a new extension other than 
the default ones, enter in the text 

box and click Add. 

Note: By default, this is enabled. 

• To remove an extension, select the 

extension from the drop down list 

and click Remove. 

Note1: Default extensions already 

available cannot be removed 

Note 2: Ada Extensions are case 

sensitive 

Specify 

Option File 

Specifies if the user wants 

to specify any set of 

options that are needed 
for the Ada-

C/C++Changer. 

Note: This can be created 

using “space” as 

delimiter. 

To specify an option file, select the 

check box and click Browse and select 

the option file. 

Note: If option file is specified then Ada 

configuration options page will open 

with the specified options in the option 

file. 

If not specified, then Ada Configuration 

options page opens with the default 
options. User can select or over ride the 

options in this page. 

 

NOTE: If you create your Eclipse Workspace in a deeply nested subdirectory, you 

will get an error while creating a project.  

  



Application Common Operating Environment User Manual 
 

  243 

ADA C/C++ Changer Configuration Options 

On the Ada-C/C++ Changer Configuration Options page, you can set the following 

configurations: 

• C/C++ Output 

• Ada Listings 

• Ada Messages 

• Ada Drivers 

• Additional 

NOTE 1: You can change the configuration options on the Ada-C/C++ Changer Property 

Page. To go to the Ada C/C++ Changer Property Page, right click on the project and select 

Properties>Ada Changer. 

Ada Changer Options Configurations File: Ada Changer options are configurable via an 

Option's file.  

a. Once you have an AdaChanger project and you want to use the same options that 

you have used. 

b. Browse to the workspace directory location and into your project_name directory. 

c. You will find a file called "options" file and you can save that file in a different 

location (you can also rename it if you want) and use it again and again. 
d. You can create new Ada Changer projects by passing the file info in the first screen. 

Ada Changer reads this info and sets up the GUI configuration values accordingly.  

e. This way you can create an option file and use it repeatedly as a template. However, 

if you later want to modify these options after creating the project, you can select the 

Ada Changer project and right click and choose Properties and select AdaChanger 
Configurationpage and change. This will get stored as the new option file for that 

project. This gives you the flexibility to use the template when you create the project 

and also let you change if needed. 

On C/C++ Output tab page, describe the C Source Options as shown in Figure  9_6. 

Figure 9_6: C/C++ Output Page 

 



Application Common Operating Environment User Manual 
 

  244 

 

 

The field descriptions on C/C++ Output tab are as follows: 

Table 9_2: Field Descriptions for C/C++ Output tab 

Field Description Your Action 

Variable 

Naming 

Specifies if you 

want to select 

variable naming. 

You can do any one of the following: 

• “Full Unique Name” means that the first 

letter of each package name is 

capitalized, as well as the first letter of 

the simple identifier. 

Note: By default, this is enabled. 

• “Simple Name is Unique” means it 

retains the original simple name. 



Application Common Operating Environment User Manual 
 

  245 

Case 

Sensitivity 

Specifies if you 

want to select case 

sensitivity. 

You can do any one of the following: 

• If “As Is” selected then it preserves the 

original upper/lower case of the Ada 

identifier. 

• "Identifier Capitalized" option means the 

following depending on the “Variable 

Naming” selection.  

- If “Full Unique Name” option is 

selected, then the first letter of the 

names of each identifier and also the 
package is capitalized with rest of the 

letters in lower case. 

- If “Simple Name is Unique” option is 

selected, then the first letter of the name 

of each identifier is capitalized with rest 

of the letters in lower case. 

Note: By default, this is enabled. 

• “All Lower" generates a C name that is 

all lower case. 

Remove 
Name 

Tables 

Specifies if you 
want to select 

remove name 

tables. 

• "Remove name tables" means omit tables 

necessary for <enum_type>'Image and 

<enum_type>'Value to work properly, as 

well as full displayable names for 

exceptions and object tags. 

Association 

Specifies the 

association 

constructs. 

You can do any one of the following: 

• To place "{" and "}" on same line as 
associated construct, select the radio 

button. 

Note: By default, this is enabled. 

• To place "{" and "}" on its own line, select 

the radio button. 

Generate 

Exception 
Handler  

Code 

Specifies if you 

want to generate 

the code with 
exception handler 

code. 

By defaultthe source code generated with 

suppressed all exceptions. 

If the radio button ofGenerate Exception 
Handler Code is selected,then thesource 

code will begenerated with all exception 

handler code. 

If not selected this option then the source 

code will be generated with suppressed all 

exceptions. 

 



Application Common Operating Environment User Manual 
 

  246 

Checks 

Specifies if you 

want to select the 

corresponding 

checks needed. 

You can do any one of the following or both: 

• If you want to do suppress language 

exception at runtime, then select the 

check box. 

• If you want to do suppress numeric 

exceptions checks (such as division 

check and overflow check) in 

generatedsource code at runtime, then 

select the check box. 

If you selected both then the language 
exception and the numeric exceptions will 

be suppressed at runtime. 

 

Limit on 

the length 

of the 
generated 

C Source 

Line 

Specifies the length 

of the line in the 

generated C Source 
files. 

You can change the 

length as required. 

Enter a value to specify the length of the line 

in the generated C Source files. 
Note: The default value is 80. 

8. On Ada Listings tab, set your listing options as shown in the Figure  9_7. 

Figure  9_7: Ada Listings Tab 



Application Common Operating Environment User Manual 
 

  247 

 
The field descriptions on Ada Listings tab are as follows: 

Table 9_3: Field Descriptions for Ada Listings tab 

Field  Description Your Action 

Source 

Listing 

Specifies how you 

want the Ada 

source list to be 

generated or not. 

You can do any one of the following: 

• To not to generate Ada source list, 

select the radio button.  

• To do Ada source list only if errors 

are present, select the radio 

button.  

Note: By default, this is enabled. 

• To always produce Ada source list, 

select the radio button. 

Source Listing Format 

Pagination 
 

 

 

 

 

Specifies the format 
of the Source 

Listing. 

 

 

 

You can do any one of the following: 

• For continuous source listing, 

select the radio button.  

Note: By default, this is enabled. 

• For listing only of lines with errors 



Application Common Operating Environment User Manual 
 

  248 

 

 
 

or warnings, select the radio 

button. 

• For paginated source listing, select 

the radio button. 

Page 

Length 

Specifies the length 

of the page. 
Enter a value for the length of the 

page. 

Note: By default, the value is 66.  

Page 

Width 

Specifies the width 

of the page. 
Enter a value for the width of the page. 

Note: By default, the value is 80. 

Listing 

only of 
lines with 

errors or 

warnings 

Specifies if you 

want to list only 
lines with errors or 

warnings 

Select the check box. 

Cross 

Reference 

Listing 

Specifies if you 

want to generate a 

cross reference 

listing or not. 

You can do any one of the following: 

• To not to generate a cross 

reference listing, select the radio 

button.  

Note: By default, this is enabled. 

• To generate a cross reference 

listing, select the radio button. 



Application Common Operating Environment User Manual 
 

  249 

9. On Ada Messages tab, set your message options as shown in Figure  9_8. 

Figure 9_8: Ada Messages Tab 

 



Application Common Operating Environment User Manual 
 

  250 

The field descriptions on Ada Messages tab are as follows: 

Table 9_4: Field Descriptions for Ada Messages tab 

Field  Description Your Action 

Error 

Messages 

Specifies if you 

want to select error 

messages. 

You can do any one of the following: 

• To select error messages, select the 

check box.  

Note: By default, this is enabled. 

• To show error sin with “ed” files, select 

the check box. 

Limit on 
number 

of error 

messages 

Specifies the count 
of error messages. 

Enter a value to specify the limit on number 

of error messages.  

Note: By default, the value is 999. 

Warning 

Messages 

 

 
 

 

Specifies if you 

want to select 

warning messages. 

 
 

 

You can do any one of the following: 

• To select warning messages, select the 

check box.  

Note: By default, this is enabled. 

• To show warnings in with “ed” files, 

select the check box. 

Info 
Messages 

Specifies if you 
want to select the 

info messages. 

You can do any one of the following: 

• To select info messages, select the check 

box. 

• To show information in with “ed” files, 

select the check box. 

Message 

Format 

Specifies the format 

of the message. 
You can do any one of the following: 

• To show given error message only once, 

select the radio button.  

Note: By default, this is enabled. 

• To show message on each line it applies, 

select the radio button. 

 



Application Common Operating Environment User Manual 
 

  251 

10. On Ada Drivers tab, set your driver options as shown in Figure  9_9. 

Figure 9_9: Ada Drivers Tab 

 
 

The field descriptions for Ada driver options tab are as follows: 

Table 9_5: Field Descriptions for Ada Drivers Options tab 

Field  Description Your Action 

Mode Specifies the 

required mode for 
reporting the 

compiler actions. 

You can do any one of the following: 

• To select the verbose mode, select the 

radio button.  

• To select the normal mode, select the 

radio button.  

Note: By default, this is enabled. 

• To select the quiet mode, select the radio 

button. 

  



Application Common Operating Environment User Manual 
 

  252 

11. On Additional Options tab, set your miscellaneous options. You can also select the 

multiple Ada source directories and click Next as shown inFigure 9_10. 

Figure 9_10: Additional Options Tab 

 
The field descriptions for additional options tab are as follows: 

Table 9_6: Field Descriptions for Additional Options tab 

Field  Description Your Action 

Additional 

Options 

Specifies if you 

want to include any 
other additional 

options such as 

custom or optional. 

To specify additional options, select the 

check box and enter a value in the text 

box. 

Add GNAT 

Compatibility 

Specifies if you 

want to add GNAT 

Compatibility. 

To add GNAT compatibility, select the 

check box.  

Add 
POSIX/LINUX 

Compatibility 

Specifies if you 
want to add 

POSIX/LINUX 

Compatibility. 

Note: This feature 

is not supported on 

Windows. It is 
supported on Linux 

only. 

This feature is disabled on Windows. 

On Linux, to add POSIX/LINUX 

compatibility, select the check box.  



Application Common Operating Environment User Manual 
 

  253 

12. On Select APIs Page, select the check box to enable the generated C Source Code 
use Real-time OS Abstractor Scheduling,along with the corresponding interface 

support from the available list and click Finish as shown inFigure 9_11. 

 

NOTE 1: If Real-time OS Abstractor Scheduling is not chosen in the Ada-C/C++ Changer 

Wizard,belowpage will be not be displayed  
 

NOTE 2: Real-time OS Abstractor Scheduling allows you to migrate to multiple Operating 

Systems and enable OS Abstractor Integration for this project after importing to AppCOE. 

 

NOTE 3: If you have enabled the OS Abstractor APIs, you can any time enable the 

additional development APIs after importing to AppCOE. 

Figure 9_11: OS Abstractor Integration Page 

 



Application Common Operating Environment User Manual 
 

  254 

13. After successfully creating anAda C/C++ Changer project, a report page is displayed 
as shown inFigure 9_12. Click Done to complete the process. The report gives 

detailed information on the status of different activities in Ada to C source file 

generation. 

 

Figure 9_12:  Ada-C Project Report Page 

 

 
 

14. You have now successfully created Ada-C/C++ Changer project. 

  



Application Common Operating Environment User Manual 
 

  255 

15. To view the C/C++ code, expand the project you have created as shown in the Figure  
9_13.  

Figure 9_13: Output for Ada-C/C++Changer 

 
 

  



Application Common Operating Environment User Manual 
 

  256 

Ada Changer project files  

The Ada Changer project has the following files: 

• Includes–This folder contains the header file paths of your project 

• Ada2CC++–This folder contains all the files generated by Ada tools 

▪ Ada Changer Project name–This folder contains the Ada Changer project 

related files 

• Include–This folder contains the Ada Include folder 

• Info–This folder contains information file subdirectory of the program 

library directory where information files for the object modules are placed. 

• Source–This folder contains the converted C/C++ source files. If OS 

Abstractor is integrated, then you get a folder, init, which contains the 

AppCOE template files. 

NOTE: For more information on the Template files, refer to AppCOE C/C++ Project 

Template Files 
 

Section in this manual 

 

• xref–This folder contains the cross-referenced files which are generated by 

the Ada tools 

• adaRoot–This folder contains the Ada sources added during your project 

creation. In case, you need to add or additional sources, you can do so in 

Project > Property page >Ada Source tab of the respective project. 

• ADA.LIB–This contains information describing the configuration of the Ada 

library 

• UNIT.MAP–This contains a unit-to-source mapping for use by the compiler 

and program builder 

• .options–This contains the list of options with which Ada ChangerProject or 

executable is created. This is a hidden file. You can view this in Navigator 

view. To view select Window > Show View > Other > General > Navigator.  

NOTE: Host Libraries and include paths are automatically added during project creation. 

For viewing this information, select Ada Changer Project > Properties > C/C++ Build > 

Settings.  
 
  



Application Common Operating Environment User Manual 
 

  257 

Building Ada C/C++ Changer Projects 
 

Ada C/C++ Changer enables you to build an existing project. This feature enables you to 

either do an incremental full build or just a C/C++ Changer Build on your Ada 95 sources. 

• The Build process will incrementally compile the Ada files that have been modified 

or added since the last build.  

NOTE: To do an incremental build, you should not do Clean. 

• If any new Ada source files are added, removed, or modified in the project, and want 

to generate the c-sources again, you can do a full build by first calling Clean and 

then Build. 

NOTE: Clean will delete all your info files, which will result in a full build. 

• You cannot re-build if new directories are created or new files are added with 

differing extension than what was provided during the project creation. If you have 

new directories and new extensions, then you must recreate the Ada C/C++ 

Changer project. 

• You will get a build error when you create an Ada C/C++ Changer project with the 

default “–all” option for the Main Ada Procedure Name. 

 

To do Ada C/C++ Changer Build do the following steps  

 

1. To generate the corresponding executable, right click on the project you have 

created on the projects pane, and select Build Project in project or from the main 

menu select Projects>Build project as shown in Figure  9_14. 

Figure  9_14: Build Project 

 
 



Application Common Operating Environment User Manual 
 

  258 

The Ada C/C++ Changer project starts to build and generates the .exe file as shown 
inFigure 9_15. 

Figure 9_15: Building Ada-C/C++Changer project 

 
 

NOTE: While running any Ada project after build, the project sometimes will again build the 

project before running the application. To avoid this do the following configuration: 

 

• Select Window > Preferences > Run/Debug >Launching. 

• Under General Options, deselect the check box for Build (if required) 

before launching flag. 

 

  



Application Common Operating Environment User Manual 
 

  259 

2. You can view the generated .exe file under the project in the Debug Folder as shown 

in the Figure  9_16. 

Figure 9_16: Generated .exe File 

 
NOTE 1: When you build Ada-C/C++ Changer project, you may get many warnings.  

Target Code Generation for Ada C/C++ Changer Projects 

AppCOE allows Target Code Generation for AdaC/C++ Changer Projects, when theAda-

C/C++Changer projects are created with Real-time OS Abstractor Scheduling or Ada-

C/C++Changer Scheduling. 

For Ada C/C++ Changer Projects, OS Abstractor interfaces are added directly to the project 

as target sources, if you have a valid and relevant Full Library  Package Generator license. 
If Target Code Generation is attempted on these projects, all the OS Abstractor 

functionality, being part of application, is again redefined in cross_os.c. This will give re-

definition errors on compile time.  

 

NOTE: For Ada-C/C++ changer projects along with Abstractor, if you do target code 

generation, it will generate sample project files. You have to generate your own project files 

to generate binaries. 

 
  



Application Common Operating Environment User Manual 
 

  260 

Manual Modifications to Projects files generated by Target Code Generator 

 

The target code output produced when optimizing Ada projects via the target code 

optimization process is a little different than that of the standard C/C++ AppCOE project.  

In this case, the API level optimization process is skipped as the application needs to link-in 

other required RTL C/C++ libraries and possible other ‘C’ interface libraries. Instead of the 
OS Abstractor code being included as part of the application, it is added into the target 

directory as a separate code base that should be built as libraries.  There will be separate 

libraries for the OS Abstractorcomponent as well as any other OS Interface components 

(like VxWorks, Windows, etc.) included in the project.  There will also be a separate Ada 

Run Time Library(RTL) required to be linked in as well.   

 

For example, if a converted Ada to C/C++ project that was integrated with OS Abstractor 

and includes the POSIX/Linux Interface were optimized for a windows target it would look 

like follows: 

    <target dir> 

        cross_os_windows 

            source 

            include 

            specific 

        posix_interface 

            source 

            include 

            specific 

        include 

            include 

        rtl 

            XIL 

            src 

            IL 

        <app name> 

            ada2C++ 

                <app name> 

                    source 

                    include 

 

The <target_dir> is the directory location where the generated code would be placed. The OS 

Abstractor and OS AbstractorInterface directories will include project files specific to your 

target.  Project files for the RTL will only be included for Windows and Linux targets.  On a 

Windows target, you will get a project file for the Eclipse IDE and on Linux you will get both 

Eclipse and make files.  For all other targets and toolsets you will need to create an RTL 
library project.  An application project will be created for the target, but it will require some 

manual modifications to build. 

 

The modifications which need to be made to the application project are as follows: 

Header Inclusion 

    Add include paths for the Ada RTL component. 

        <target dir>/rtl 

        <target dir>/rtl/src 

        <target dir>/rtl/IL 

         

    Add include path for any other 'C' library that you need for your 

application 

     

    if your Ada project is integrated with OS Abstractor you will need to 

add the following: 

        <target dir>/include/include 



Application Common Operating Environment User Manual 
 

  261 

        <target dir>/cross_os_<target>/include 

Ada C/C++ Changer Property Page 

 

AdaC/C++ Changer Property Page enables you to change or modify the configuration 

options you have set for your project.  

To go to the property page: 

1. On AppCOE Projects pane, select the Ada C/C++ Changer project you have 

created. Right click on it and select Properties and shown in the Figure  9_17. 

 

Figure  9_17: Ada C/C++ Changer Properties 

 

 
 

2. The Ada C/C++ Changer property page is displayed as shown in the Figure  

9_18, Make the necessary changes and click Apply.  
 

3. To change the Main Procedure Name, on the AdaC/C++ Changer property page, 
click on Additional tab, and make the necessary changes and click Apply. 

 

  



Application Common Operating Environment User Manual 
 

  262 

Figure  9_18: Ada  C/C++ Changer Property Page 

 
 

4. When you do an Ada Build, you can re-import files, or import deleted files, 

remove any files or change the Main procedure name on this page. You can 

modify on any of the configurations on the property page.  

 

NOTE: You cannot edit or modify the Ada Source Directory location. 

 

  



Application Common Operating Environment User Manual 
 

  263 

ADAC/C++ Changer – Additional Information’s 

Warning messages  
 

While importing an Ada project, you will receive 3617 warning messages. It appears that 

most, if not all of them, are associated with the rtl files. 

 

They are as follows: 

• Defined but not used variables(3129) 

• Return with no value, in function returning non-void (15) 

• Assignment from incompatible pointer type (52) 

• Comparison is always false due to limited range of data type (94) 

• Cast from pointer to integer of different size (3) 

• Comparison of distinct pointer types lacks a cast (8) 

• Control reaches end of non-void function (71) 

• Implicit declaration of function (10) 

• Initialization from incompatible pointer type (5) 

• Integer constant is so large that it is unsigned (1) 

• Left shift count >= width type (1) 

• Missing braces around initializer (2) 

• Passing arg from incompatible pointer type (114) 

• Statement with no effect (28) 

• Unused variable (83) 

• This decimal constant is unsigned only in ISO C90 (1) 

 

 
NOTE: When you are working on 64bit architecture, make sure that -m32 flag is added to 

both the compiler and linker options in project properties to avoid compilation errors. 

 

  



Application Common Operating Environment User Manual 
 

  264 

Additional Ada C/C++ Changer Tools 

Ada C/C++ Changer is equipped with following additional tools:  

1. Ada Line Count – This feature enables you to count the Ada lines of code with a simple 
program. It just takes a list of file names, and prints out the number of lines of Ada 

source code, lines of comments, and blank lines, counting lines of code the same way 

the license checker counts them. 

The application name is: “ada_line_count.exe”. You have to run this .exe in cmd 

prompt. 

Command: ada_line_count file1 file2 file3... 

2. POSIX ADA Support (For Linux only) -- Ada C/C++ Changer toolsnow give support to 

POSIX. You have a separate library with POSIX Ada packages, for Linux only. To make 

this "linked library" available to a given user, the adaopts command: 

Command: adaopts -p /usr/local/AppCOE/Tools/Ada/linux/posix_ada 

will link the posix-ada library into the "search path" for the current library. 

3. Ada Support for GNAT compatibility compiler – This feature enables you to link the 

"gnat compatibility" library into the search path for the currentlibrary.  The following 

commands are used to link: 

Linux Command: adaopts -p /usr/local/AppCOE/Tools/Ada/linux/gnat_compat 

Windows Command: adaopts -p 

C:\Mapusoft\AppCOE\Tools\Ada\windows\gnat_compat   

4. Ada Support for Win32 – This feature enables support for Ada on Win32 host. The 

following command is used for the "win32ada" library: 

Windows Command: adaopts -p C:\Mapusoft\AppCOE\Tools\Ada\windows\win32ada 

5. For Ada C/C++Changer project, from Properties page if you change Ada Main 

procedure, it will not build the project with that procedure immediately. You need to 

select the project and refresh 1-2 times and clean the project and then do the build. 

Note: On Linux HOST/Environment, you may need to set View/Modify permissions to the 

Tools folder while creating a project. If the AppCOE installer did not set View/Modify 

permissions, please follow the below steps to do this. 

To set View/Modify permissions: 

• Go to the Tools folder. 

• Right click on the Tools folder, and select Properties>Permissions.  

• Change the required permissions.  

Then provide executable permissions to files under [tools/Ada/linux/bin] folder before 

creating any Ada project. Otherwise it will give an AppCOE exception while trying to convert 

Ada to C using Ada-C/C++Changer Options. 

To change executable permissions: 

• Go to Terminal/Command window. 

• Go to the respective folder location by cd AppCOE Source 

directory/Tools/Ada/Linux/bin. 

• Once you are in “bin” folder, run the command like <chmod 777 *> 

• Now observe files changes color from black to green. 

 

  



Application Common Operating Environment User Manual 
 

  265 

Revision History 

Document Title: Application Common Operating Environment User Manual 

 

Release Number: 1.8.1 

 

Release Revision Orig. of 

Change 
Description of Change 

1.3.6 0.1 VV New Manual 

1.3.6.1 0.1 VV Ada sections 

1.3.7 0.1 VV Changes to Ada-C/C++ Changer and Target Code 

Optimization sections 

1.3.8 0.1 VV Changes to Target Code Optimization sections 

1.3.9 0.1 VV Changes to ThreadX sections 

Changes to Ada-C/C++ Project Creation 

1.3.9.1 0.1 VV Changed the Release Number 

1.3.9.2 0.1 VV Changed the Release Number 

1.4 0.1 VV Changed the Release Number 

1.5 0.1 VV • ADA new release (adabgen & adacgen-4.031) 

• Ada GUI  Changes for exception handling 

Functionality 

• Auto saving on  build a C/C++ project 

1.6 0.1 VV • Integrated FreeRTOS Interface 

• Integrated µC/OS Interface 

• Ada new release (Adacgen 4.038) 

1.7 0.1 VV • Ada new release (Adacgen 4.041) 

• Integrated Complex Function in Ada-C/C++ 

Changer Product 

1.8 0.1 VV • Bug fixes done on previous release 

• AppCOE has been updated to Eclipse IDE and 

Installed Features version Mars.2 (4.5.2) for all 
operating systems. 

• The Java Runtime Environment (JRE) has been 

updated to version 1.8 for all operating systems. 

 

1.8.1 0.1 VV • Bugs from the previous release resolved. 

• A new project type of “AppCOE” is added for code 

generation on Windows and Linux targets. 

• Installer replaced with a new, more advanced, 

installer which provides better usability, 

performance, and features. 
 

 

© Copyright 2021 MapuSoft Technologies, Inc. - All Rights Reserved 

The information contained herein is subject to change without notice. The materials located on the 
Mapusoft. (”MapuSoft”) web site are protected by copyright, trademark and other forms of proprietary 



Application Common Operating Environment User Manual 
 

  266 

rights and are owned or controlled by MapuSoft or the party credited as the provider of the 
information.  

MapuSoft retains all copyrights and other property rights in all text, graphic images, and software 

owned by MapuSoft and hereby authorizes you to electronically copy documents published herein 
solely for the purpose of reviewing the information.  

You may not alter any files in this document for advertisement, or print the information contained 
herein, without prior written permission from MapuSoft. 

MapuSoft assumes no responsibility for errors or omissions in this publication or other documents 
which are referenced by or linked to this publication. This publication could include technical or other 
inaccuracies, and not all products or services referenced herein are available in all areas. MapuSoft 
assumes no responsibility to you or any third party for the consequences of an error or omissions. 
The information on this web site is periodically updated and may change without notice. 

This product includes the software with the following trademarks: 

MS-DOS is a trademark of Microsoft Corporation. 
UNIX is a trademark of X/Open. 
IBM PC is a trademark of International Business Machines, Inc. 
Nucleus PLUS and Nucleus NET are registered trademarks of Mentor Graphics Corporation. 
Linux is a registered trademark of Linus Torvald. 
VxWorks and pSOS are registered trademarks of Wind River Systems. 
µC/OS is a registered trademark of Micrium Inc. 
FreeRTOS is a registered trademark of Real Time Engineers Ltd. 

 

 


